Loading…

An approach to fuzzy control of nonlinear systems: stability and design issues

Presents a design methodology for stabilization of a class of nonlinear systems. First, the authors represent a nonlinear plant with a Takagi-Sugeno fuzzy model. Then a model-based fuzzy controller design utilizing the concept of the so-called "parallel distributed compensation" is employe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems 1996-02, Vol.4 (1), p.14-23
Main Authors: Wang, H.O., Tanaka, K., Griffin, M.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Presents a design methodology for stabilization of a class of nonlinear systems. First, the authors represent a nonlinear plant with a Takagi-Sugeno fuzzy model. Then a model-based fuzzy controller design utilizing the concept of the so-called "parallel distributed compensation" is employed. The main idea of the controller design is to derive each control rule so as to compensate each rule of a fuzzy system. The design procedure is conceptually simple and natural. Moreover, the stability analysis and control design problems can be reduced to linear matrix inequality (LMI) problems. Therefore, they can be solved efficiently in practice by convex programming techniques for LMIs. The design methodology is illustrated by application to the problem of balancing and swing-up of an inverted pendulum on a cart.
ISSN:1063-6706
1941-0034
DOI:10.1109/91.481841