Loading…

The excitation of UHF signals by partial discharges in GIS

The fundamental theory of the UHF method for detecting partial discharge (PD) in gas insulated substations (GIS) is presented. The effects of position, size, current amplitude and pulse shape of the PD source on the UHF signal can be predicted using this theory. Excitation of propagating electromagn...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on dielectrics and electrical insulation 1996-04, Vol.3 (2), p.213-228
Main Authors: Judd, M.D., Farish, O., Hampton, B.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fundamental theory of the UHF method for detecting partial discharge (PD) in gas insulated substations (GIS) is presented. The effects of position, size, current amplitude and pulse shape of the PD source on the UHF signal can be predicted using this theory. Excitation of propagating electromagnetic waves by a PD current pulse within the coaxial waveguides formed by GIS components is explained by making use of dyadic Green's functions for the electric fields of propagating modes. Experiments with a coaxial test chamber are used to verify the theoretical predictions, and comparisons are made between measured and simulated UHF signals. Some implications for the UHF measurement of PD are discussed, together with positioning and sensitivity requirements for UHF couplers. A scheme is proposed for standardizing PD measurements made using the UHF technique.
ISSN:1070-9878
1558-4135
DOI:10.1109/94.486773