Loading…
Pole assignment for uncertain systems in a specified disk by state feedback
This paper presents a method for assigning the poles in a specified disk by state feedback for a linear discrete or continuous time uncertain system, the uncertainty being norm bounded. For this the "quadratic d stabilizability" concept which is the counterpart of quadratic stabilizability...
Saved in:
Published in: | IEEE transactions on automatic control 1995-01, Vol.40 (1), p.184-190 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963 |
container_end_page | 190 |
container_issue | 1 |
container_start_page | 184 |
container_title | IEEE transactions on automatic control |
container_volume | 40 |
creator | Garcia, G. Bernussou, J. |
description | This paper presents a method for assigning the poles in a specified disk by state feedback for a linear discrete or continuous time uncertain system, the uncertainty being norm bounded. For this the "quadratic d stabilizability" concept which is the counterpart of quadratic stabilizability in the context of pole placement is defined and a necessary and sufficient condition for quadratic d stabilizability derived. This condition expressed as a parameter dependent discrete Riccati equation enables one to design the control gain matrix by solving iteratively a discrete Riccati equation.< > |
doi_str_mv | 10.1109/9.362872 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_9_362872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>362872</ieee_id><sourcerecordid>28536154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963</originalsourceid><addsrcrecordid>eNqNkMtLw0AQhxdRsD7As6c9iHhJ3Weye5TiCwt60HPYbGZlbR51Jz30vzclRa-eZob5-PHxI-SCsznnzN7aucyFKcQBmXGtTSa0kIdkxhg3mRUmPyYniF_jmSvFZ-TlrW-AOsT42bXQDTT0iW46D2lwsaO4xQFapOPqKK7BxxChpnXEFa22FAc3AA0AdeX86owcBdcgnO_nKfl4uH9fPGXL18fnxd0y8zJXQ6byUUzzSnqlmK-MVhoK8FxXQTsmmTYFBFMJJ0JlpFW5MUWoeXDeB6lsLk_J9ZS7Tv33BnAo24gemsZ10G-wFMZao6T9B6jlKKNG8GYCfeoRE4RynWLr0rbkrNzVWtpyqnVEr_aZDr1rQnKdj_jLS22NFDvHywmLAPD3nTJ-APN8fjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28536154</pqid></control><display><type>article</type><title>Pole assignment for uncertain systems in a specified disk by state feedback</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Garcia, G. ; Bernussou, J.</creator><creatorcontrib>Garcia, G. ; Bernussou, J.</creatorcontrib><description>This paper presents a method for assigning the poles in a specified disk by state feedback for a linear discrete or continuous time uncertain system, the uncertainty being norm bounded. For this the "quadratic d stabilizability" concept which is the counterpart of quadratic stabilizability in the context of pole placement is defined and a necessary and sufficient condition for quadratic d stabilizability derived. This condition expressed as a parameter dependent discrete Riccati equation enables one to design the control gain matrix by solving iteratively a discrete Riccati equation.< ></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.362872</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive control ; Applied sciences ; Automatic control ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Geometry ; Linear systems ; Polynomials ; Riccati equations ; Robust control ; Robust stability ; State feedback ; System theory ; Uncertain systems</subject><ispartof>IEEE transactions on automatic control, 1995-01, Vol.40 (1), p.184-190</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963</citedby><cites>FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/362872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3598326$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, G.</creatorcontrib><creatorcontrib>Bernussou, J.</creatorcontrib><title>Pole assignment for uncertain systems in a specified disk by state feedback</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This paper presents a method for assigning the poles in a specified disk by state feedback for a linear discrete or continuous time uncertain system, the uncertainty being norm bounded. For this the "quadratic d stabilizability" concept which is the counterpart of quadratic stabilizability in the context of pole placement is defined and a necessary and sufficient condition for quadratic d stabilizability derived. This condition expressed as a parameter dependent discrete Riccati equation enables one to design the control gain matrix by solving iteratively a discrete Riccati equation.< ></description><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Linear systems</subject><subject>Polynomials</subject><subject>Riccati equations</subject><subject>Robust control</subject><subject>Robust stability</subject><subject>State feedback</subject><subject>System theory</subject><subject>Uncertain systems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqNkMtLw0AQhxdRsD7As6c9iHhJ3Weye5TiCwt60HPYbGZlbR51Jz30vzclRa-eZob5-PHxI-SCsznnzN7aucyFKcQBmXGtTSa0kIdkxhg3mRUmPyYniF_jmSvFZ-TlrW-AOsT42bXQDTT0iW46D2lwsaO4xQFapOPqKK7BxxChpnXEFa22FAc3AA0AdeX86owcBdcgnO_nKfl4uH9fPGXL18fnxd0y8zJXQ6byUUzzSnqlmK-MVhoK8FxXQTsmmTYFBFMJJ0JlpFW5MUWoeXDeB6lsLk_J9ZS7Tv33BnAo24gemsZ10G-wFMZao6T9B6jlKKNG8GYCfeoRE4RynWLr0rbkrNzVWtpyqnVEr_aZDr1rQnKdj_jLS22NFDvHywmLAPD3nTJ-APN8fjs</recordid><startdate>199501</startdate><enddate>199501</enddate><creator>Garcia, G.</creator><creator>Bernussou, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>199501</creationdate><title>Pole assignment for uncertain systems in a specified disk by state feedback</title><author>Garcia, G. ; Bernussou, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Linear systems</topic><topic>Polynomials</topic><topic>Riccati equations</topic><topic>Robust control</topic><topic>Robust stability</topic><topic>State feedback</topic><topic>System theory</topic><topic>Uncertain systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, G.</creatorcontrib><creatorcontrib>Bernussou, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, G.</au><au>Bernussou, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pole assignment for uncertain systems in a specified disk by state feedback</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1995-01</date><risdate>1995</risdate><volume>40</volume><issue>1</issue><spage>184</spage><epage>190</epage><pages>184-190</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This paper presents a method for assigning the poles in a specified disk by state feedback for a linear discrete or continuous time uncertain system, the uncertainty being norm bounded. For this the "quadratic d stabilizability" concept which is the counterpart of quadratic stabilizability in the context of pole placement is defined and a necessary and sufficient condition for quadratic d stabilizability derived. This condition expressed as a parameter dependent discrete Riccati equation enables one to design the control gain matrix by solving iteratively a discrete Riccati equation.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.362872</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1995-01, Vol.40 (1), p.184-190 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_9_362872 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptive control Applied sciences Automatic control Computer science control theory systems Control theory. Systems Exact sciences and technology Geometry Linear systems Polynomials Riccati equations Robust control Robust stability State feedback System theory Uncertain systems |
title | Pole assignment for uncertain systems in a specified disk by state feedback |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pole%20assignment%20for%20uncertain%20systems%20in%20a%20specified%20disk%20by%20state%20feedback&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Garcia,%20G.&rft.date=1995-01&rft.volume=40&rft.issue=1&rft.spage=184&rft.epage=190&rft.pages=184-190&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.362872&rft_dat=%3Cproquest_cross%3E28536154%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28536154&rft_id=info:pmid/&rft_ieee_id=362872&rfr_iscdi=true |