Loading…

Pole assignment for uncertain systems in a specified disk by state feedback

This paper presents a method for assigning the poles in a specified disk by state feedback for a linear discrete or continuous time uncertain system, the uncertainty being norm bounded. For this the "quadratic d stabilizability" concept which is the counterpart of quadratic stabilizability...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 1995-01, Vol.40 (1), p.184-190
Main Authors: Garcia, G., Bernussou, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963
cites cdi_FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963
container_end_page 190
container_issue 1
container_start_page 184
container_title IEEE transactions on automatic control
container_volume 40
creator Garcia, G.
Bernussou, J.
description This paper presents a method for assigning the poles in a specified disk by state feedback for a linear discrete or continuous time uncertain system, the uncertainty being norm bounded. For this the "quadratic d stabilizability" concept which is the counterpart of quadratic stabilizability in the context of pole placement is defined and a necessary and sufficient condition for quadratic d stabilizability derived. This condition expressed as a parameter dependent discrete Riccati equation enables one to design the control gain matrix by solving iteratively a discrete Riccati equation.< >
doi_str_mv 10.1109/9.362872
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_9_362872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>362872</ieee_id><sourcerecordid>28536154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963</originalsourceid><addsrcrecordid>eNqNkMtLw0AQhxdRsD7As6c9iHhJ3Weye5TiCwt60HPYbGZlbR51Jz30vzclRa-eZob5-PHxI-SCsznnzN7aucyFKcQBmXGtTSa0kIdkxhg3mRUmPyYniF_jmSvFZ-TlrW-AOsT42bXQDTT0iW46D2lwsaO4xQFapOPqKK7BxxChpnXEFa22FAc3AA0AdeX86owcBdcgnO_nKfl4uH9fPGXL18fnxd0y8zJXQ6byUUzzSnqlmK-MVhoK8FxXQTsmmTYFBFMJJ0JlpFW5MUWoeXDeB6lsLk_J9ZS7Tv33BnAo24gemsZ10G-wFMZao6T9B6jlKKNG8GYCfeoRE4RynWLr0rbkrNzVWtpyqnVEr_aZDr1rQnKdj_jLS22NFDvHywmLAPD3nTJ-APN8fjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28536154</pqid></control><display><type>article</type><title>Pole assignment for uncertain systems in a specified disk by state feedback</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Garcia, G. ; Bernussou, J.</creator><creatorcontrib>Garcia, G. ; Bernussou, J.</creatorcontrib><description>This paper presents a method for assigning the poles in a specified disk by state feedback for a linear discrete or continuous time uncertain system, the uncertainty being norm bounded. For this the "quadratic d stabilizability" concept which is the counterpart of quadratic stabilizability in the context of pole placement is defined and a necessary and sufficient condition for quadratic d stabilizability derived. This condition expressed as a parameter dependent discrete Riccati equation enables one to design the control gain matrix by solving iteratively a discrete Riccati equation.&lt; &gt;</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.362872</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive control ; Applied sciences ; Automatic control ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Geometry ; Linear systems ; Polynomials ; Riccati equations ; Robust control ; Robust stability ; State feedback ; System theory ; Uncertain systems</subject><ispartof>IEEE transactions on automatic control, 1995-01, Vol.40 (1), p.184-190</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963</citedby><cites>FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/362872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3598326$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, G.</creatorcontrib><creatorcontrib>Bernussou, J.</creatorcontrib><title>Pole assignment for uncertain systems in a specified disk by state feedback</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This paper presents a method for assigning the poles in a specified disk by state feedback for a linear discrete or continuous time uncertain system, the uncertainty being norm bounded. For this the "quadratic d stabilizability" concept which is the counterpart of quadratic stabilizability in the context of pole placement is defined and a necessary and sufficient condition for quadratic d stabilizability derived. This condition expressed as a parameter dependent discrete Riccati equation enables one to design the control gain matrix by solving iteratively a discrete Riccati equation.&lt; &gt;</description><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Linear systems</subject><subject>Polynomials</subject><subject>Riccati equations</subject><subject>Robust control</subject><subject>Robust stability</subject><subject>State feedback</subject><subject>System theory</subject><subject>Uncertain systems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqNkMtLw0AQhxdRsD7As6c9iHhJ3Weye5TiCwt60HPYbGZlbR51Jz30vzclRa-eZob5-PHxI-SCsznnzN7aucyFKcQBmXGtTSa0kIdkxhg3mRUmPyYniF_jmSvFZ-TlrW-AOsT42bXQDTT0iW46D2lwsaO4xQFapOPqKK7BxxChpnXEFa22FAc3AA0AdeX86owcBdcgnO_nKfl4uH9fPGXL18fnxd0y8zJXQ6byUUzzSnqlmK-MVhoK8FxXQTsmmTYFBFMJJ0JlpFW5MUWoeXDeB6lsLk_J9ZS7Tv33BnAo24gemsZ10G-wFMZao6T9B6jlKKNG8GYCfeoRE4RynWLr0rbkrNzVWtpyqnVEr_aZDr1rQnKdj_jLS22NFDvHywmLAPD3nTJ-APN8fjs</recordid><startdate>199501</startdate><enddate>199501</enddate><creator>Garcia, G.</creator><creator>Bernussou, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>199501</creationdate><title>Pole assignment for uncertain systems in a specified disk by state feedback</title><author>Garcia, G. ; Bernussou, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Linear systems</topic><topic>Polynomials</topic><topic>Riccati equations</topic><topic>Robust control</topic><topic>Robust stability</topic><topic>State feedback</topic><topic>System theory</topic><topic>Uncertain systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, G.</creatorcontrib><creatorcontrib>Bernussou, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, G.</au><au>Bernussou, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pole assignment for uncertain systems in a specified disk by state feedback</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1995-01</date><risdate>1995</risdate><volume>40</volume><issue>1</issue><spage>184</spage><epage>190</epage><pages>184-190</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This paper presents a method for assigning the poles in a specified disk by state feedback for a linear discrete or continuous time uncertain system, the uncertainty being norm bounded. For this the "quadratic d stabilizability" concept which is the counterpart of quadratic stabilizability in the context of pole placement is defined and a necessary and sufficient condition for quadratic d stabilizability derived. This condition expressed as a parameter dependent discrete Riccati equation enables one to design the control gain matrix by solving iteratively a discrete Riccati equation.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.362872</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1995-01, Vol.40 (1), p.184-190
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_9_362872
source IEEE Electronic Library (IEL) Journals
subjects Adaptive control
Applied sciences
Automatic control
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Geometry
Linear systems
Polynomials
Riccati equations
Robust control
Robust stability
State feedback
System theory
Uncertain systems
title Pole assignment for uncertain systems in a specified disk by state feedback
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pole%20assignment%20for%20uncertain%20systems%20in%20a%20specified%20disk%20by%20state%20feedback&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Garcia,%20G.&rft.date=1995-01&rft.volume=40&rft.issue=1&rft.spage=184&rft.epage=190&rft.pages=184-190&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.362872&rft_dat=%3Cproquest_cross%3E28536154%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-4615551b3c440cb8545e7ec15bf5a030587ef8b2a2fb83946887fd1faccf34963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28536154&rft_id=info:pmid/&rft_ieee_id=362872&rfr_iscdi=true