Loading…

Closed-Loop Control of Variable Stiffness Actuated Robots via Nonlinear Model Predictive Control

Variable stiffness actuation has recently attracted great interest in robotics, especially in areas involving a high degree of human-robot interaction. After investigating various design approaches for variable stiffness actuated (VSA) robots, currently the focus is shifting to the control of these...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2015, Vol.3, p.235-248
Main Authors: Zhakatayev, Altay, Rubagotti, Matteo, Varol, Huseyin Atakan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Variable stiffness actuation has recently attracted great interest in robotics, especially in areas involving a high degree of human-robot interaction. After investigating various design approaches for variable stiffness actuated (VSA) robots, currently the focus is shifting to the control of these systems. Control of VSA robots is challenging due to the intrinsic nonlinearity of their dynamicsdynamics and the need to satisfy constraints on input and state variables. Contrary to the partially open-loop state-of-the-art approaches, in this paper, we present a close-loop control framework for VSA robots leveraging recent increases in computational resources and advances in optimization algorithms. In particular, we generate reference trajectories by means of open-loop optimal control, and track these trajectories via nonlinear model predictive control in a closed-loop manner. In order to show the advantages of our proposed scheme with respect to the previous (partially open-loop) ones, extensive simulation and real-world experiments were conducted using a two link planar manipulator for a ball throwing task. The results of these experiments indicate that the closed-loop scheme outperforms the partially open loop one due to its ability to compensate for model uncertainties and external disturbances, while satisfying the imposed constraints.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2015.2418157