Loading…

Impact of Device Orientation on Error Performance of LiFi Systems

Most studies on optical wireless communications (OWC) have neglected the effect of random orientation in their performance analysis due to the lack of a proper model for the random orientation. Our recent empirical-based research illustrates that the random orientation follows a Laplace distribution...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.41690-41701
Main Authors: Dehghani Soltani, Mohammad, Purwita, Ardimas Andi, Tavakkolnia, Iman, Haas, Harald, Safari, Majid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most studies on optical wireless communications (OWC) have neglected the effect of random orientation in their performance analysis due to the lack of a proper model for the random orientation. Our recent empirical-based research illustrates that the random orientation follows a Laplace distribution for the static user equipment (UE). In this paper, we analyze the device orientation and assess its importance on system performance. The reliability of the OWC channel highly depends on the availability and alignment of line-of-sight (LOS) links. In this paper, the effect of receiver orientation, including both polar and azimuth angles on the LOS channel gain are analyzed. The probability of establishing the LOS link is investigated and the probability density function (PDF) of signal-to-noise ratio (SNR) for a randomly oriented device is derived. By means of the PDF of SNR, the bit-error ratio (BER) of DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM) in additive white Gaussian noise (AWGN) channels is evaluated. A closed-form approximation for the BER of UE with random orientation is presented which shows a good match with Monte-Carlo simulation results. Furthermore, the impact of UE's random motion on the BER performance has been assessed. Finally, the effect of random orientation on the average signal-to-interference-plus-noise ratio (SINR) in a multiple access points (AP) scenario is investigated.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2907463