Loading…

Discretization Based Solutions for Secure Machine Learning Against Adversarial Attacks

Adversarial examples are perturbed inputs that are designed (from a deep learning network's (DLN) parameter gradients) to mislead the DLN during test time. Intuitively, constraining the dimensionality of inputs or parameters of a network reduces the "space" in which adversarial exampl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.70157-70168
Main Authors: Panda, Priyadarshini, Chakraborty, Indranil, Roy, Kaushik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-f8078972457dd357f6d4726fdce81aa3c47451fe6cb4039505e99edbd76bfed13
cites cdi_FETCH-LOGICAL-c474t-f8078972457dd357f6d4726fdce81aa3c47451fe6cb4039505e99edbd76bfed13
container_end_page 70168
container_issue
container_start_page 70157
container_title IEEE access
container_volume 7
creator Panda, Priyadarshini
Chakraborty, Indranil
Roy, Kaushik
description Adversarial examples are perturbed inputs that are designed (from a deep learning network's (DLN) parameter gradients) to mislead the DLN during test time. Intuitively, constraining the dimensionality of inputs or parameters of a network reduces the "space" in which adversarial examples exist. Guided by this intuition, we demonstrate that discretization greatly improves the robustness of the DLNs against adversarial attacks. Specifically, discretizing the input space (or allowed pixel levels from 256 values or 8 bit to 4 values or 2 bit ) extensively improves the adversarial robustness of the DLNs for a substantial range of perturbations for minimal loss in test accuracy. Furthermore, we find that binary neural networks (BNNs) and related variants are intrinsically more robust than their full precision counterparts in adversarial scenarios. Combining input discretization with the BNNs furthers the robustness, even waiving the need for adversarial training for the certain magnitude of perturbation values. We evaluate the effect of discretization on MNIST, CIFAR10, CIFAR100, and ImageNet datasets. Across all datasets, we observe maximal adversarial resistance with 2 bit input discretization that incurs an adversarial accuracy loss of just ~1% - 2% as compared to clean test accuracy against single-step attacks. We also show standalone discretization remains vulnerable to stronger multi-step attack scenarios necessitating the use of adversarial training with discretization as an improved defense strategy.
doi_str_mv 10.1109/ACCESS.2019.2919463
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2919463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8723317</ieee_id><doaj_id>oai_doaj_org_article_8094aca3bae2415faa22c3aba4d9b10f</doaj_id><sourcerecordid>2455611816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-f8078972457dd357f6d4726fdce81aa3c47451fe6cb4039505e99edbd76bfed13</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIoGqJH4C3whkLNdPkXxqLppasBBD05yJVbk0qHriikpB2i_vnIUBN3LPjAzu9ipqgWjK8ao-dyu1ze73YpTZlbcMCNr8aGacVabpVCi_vhf_amal3KgYzTjSOlZ9fg1FpdxiH9hiKknX6CgJ7t0PJ3bQkLKZIfulJHcgXuKPZItQu5jvyftHmJfBtL6F8wFcoQjaYcB3M9yVV0EOBacv-XL6uHbzf36-3L743azbrdLJ7UclqGhujGaS6W9F0qH2kvN6-AdNgxAnFGKBaxdJ6kwiio0Bn3ndd0F9ExcVptJ1yc42Occf0H-YxNE-zpIeW8hD9Ed0TbUSHAgOkAumQoAnDsBHUhvOkbDqHU9aT3n9PuEZbCHdMr9eL4dD1Q1Y-PTRpSYUC6nUjKG962M2rMfdvLDnv2wb36MrMXEioj4zmg0F4Jp8Q_V2Icx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455611816</pqid></control><display><type>article</type><title>Discretization Based Solutions for Secure Machine Learning Against Adversarial Attacks</title><source>IEEE Xplore Open Access Journals</source><creator>Panda, Priyadarshini ; Chakraborty, Indranil ; Roy, Kaushik</creator><creatorcontrib>Panda, Priyadarshini ; Chakraborty, Indranil ; Roy, Kaushik</creatorcontrib><description><![CDATA[Adversarial examples are perturbed inputs that are designed (from a deep learning network's (DLN) parameter gradients) to mislead the DLN during test time. Intuitively, constraining the dimensionality of inputs or parameters of a network reduces the "space" in which adversarial examples exist. Guided by this intuition, we demonstrate that discretization greatly improves the robustness of the DLNs against adversarial attacks. Specifically, discretizing the input space (or allowed pixel levels from 256 values or 8<inline-formula> <tex-math notation="LaTeX">bit </tex-math></inline-formula> to 4 values or 2<inline-formula> <tex-math notation="LaTeX">bit </tex-math></inline-formula>) extensively improves the adversarial robustness of the DLNs for a substantial range of perturbations for minimal loss in test accuracy. Furthermore, we find that binary neural networks (BNNs) and related variants are intrinsically more robust than their full precision counterparts in adversarial scenarios. Combining input discretization with the BNNs furthers the robustness, even waiving the need for adversarial training for the certain magnitude of perturbation values. We evaluate the effect of discretization on MNIST, CIFAR10, CIFAR100, and ImageNet datasets. Across all datasets, we observe maximal adversarial resistance with 2<inline-formula> <tex-math notation="LaTeX">bit </tex-math></inline-formula> input discretization that incurs an adversarial accuracy loss of just ~1% - 2% as compared to clean test accuracy against single-step attacks. We also show standalone discretization remains vulnerable to stronger multi-step attack scenarios necessitating the use of adversarial training with discretization as an improved defense strategy.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2919463</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Adversarial robustness ; binarized neural networks ; Data models ; Datasets ; deep learning ; Discretization ; discretization techniques ; Machine learning ; Manifolds ; Neural networks ; Parameters ; Perturbation ; Perturbation methods ; Predictive models ; Robustness ; Training</subject><ispartof>IEEE access, 2019, Vol.7, p.70157-70168</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-f8078972457dd357f6d4726fdce81aa3c47451fe6cb4039505e99edbd76bfed13</citedby><cites>FETCH-LOGICAL-c474t-f8078972457dd357f6d4726fdce81aa3c47451fe6cb4039505e99edbd76bfed13</cites><orcidid>0000-0002-4167-6782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8723317$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Panda, Priyadarshini</creatorcontrib><creatorcontrib>Chakraborty, Indranil</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><title>Discretization Based Solutions for Secure Machine Learning Against Adversarial Attacks</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Adversarial examples are perturbed inputs that are designed (from a deep learning network's (DLN) parameter gradients) to mislead the DLN during test time. Intuitively, constraining the dimensionality of inputs or parameters of a network reduces the "space" in which adversarial examples exist. Guided by this intuition, we demonstrate that discretization greatly improves the robustness of the DLNs against adversarial attacks. Specifically, discretizing the input space (or allowed pixel levels from 256 values or 8<inline-formula> <tex-math notation="LaTeX">bit </tex-math></inline-formula> to 4 values or 2<inline-formula> <tex-math notation="LaTeX">bit </tex-math></inline-formula>) extensively improves the adversarial robustness of the DLNs for a substantial range of perturbations for minimal loss in test accuracy. Furthermore, we find that binary neural networks (BNNs) and related variants are intrinsically more robust than their full precision counterparts in adversarial scenarios. Combining input discretization with the BNNs furthers the robustness, even waiving the need for adversarial training for the certain magnitude of perturbation values. We evaluate the effect of discretization on MNIST, CIFAR10, CIFAR100, and ImageNet datasets. Across all datasets, we observe maximal adversarial resistance with 2<inline-formula> <tex-math notation="LaTeX">bit </tex-math></inline-formula> input discretization that incurs an adversarial accuracy loss of just ~1% - 2% as compared to clean test accuracy against single-step attacks. We also show standalone discretization remains vulnerable to stronger multi-step attack scenarios necessitating the use of adversarial training with discretization as an improved defense strategy.]]></description><subject>Accuracy</subject><subject>Adversarial robustness</subject><subject>binarized neural networks</subject><subject>Data models</subject><subject>Datasets</subject><subject>deep learning</subject><subject>Discretization</subject><subject>discretization techniques</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Predictive models</subject><subject>Robustness</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIoGqJH4C3whkLNdPkXxqLppasBBD05yJVbk0qHriikpB2i_vnIUBN3LPjAzu9ipqgWjK8ao-dyu1ze73YpTZlbcMCNr8aGacVabpVCi_vhf_amal3KgYzTjSOlZ9fg1FpdxiH9hiKknX6CgJ7t0PJ3bQkLKZIfulJHcgXuKPZItQu5jvyftHmJfBtL6F8wFcoQjaYcB3M9yVV0EOBacv-XL6uHbzf36-3L743azbrdLJ7UclqGhujGaS6W9F0qH2kvN6-AdNgxAnFGKBaxdJ6kwiio0Bn3ndd0F9ExcVptJ1yc42Occf0H-YxNE-zpIeW8hD9Ed0TbUSHAgOkAumQoAnDsBHUhvOkbDqHU9aT3n9PuEZbCHdMr9eL4dD1Q1Y-PTRpSYUC6nUjKG962M2rMfdvLDnv2wb36MrMXEioj4zmg0F4Jp8Q_V2Icx</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Panda, Priyadarshini</creator><creator>Chakraborty, Indranil</creator><creator>Roy, Kaushik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4167-6782</orcidid></search><sort><creationdate>2019</creationdate><title>Discretization Based Solutions for Secure Machine Learning Against Adversarial Attacks</title><author>Panda, Priyadarshini ; Chakraborty, Indranil ; Roy, Kaushik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-f8078972457dd357f6d4726fdce81aa3c47451fe6cb4039505e99edbd76bfed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Adversarial robustness</topic><topic>binarized neural networks</topic><topic>Data models</topic><topic>Datasets</topic><topic>deep learning</topic><topic>Discretization</topic><topic>discretization techniques</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Predictive models</topic><topic>Robustness</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panda, Priyadarshini</creatorcontrib><creatorcontrib>Chakraborty, Indranil</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panda, Priyadarshini</au><au>Chakraborty, Indranil</au><au>Roy, Kaushik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discretization Based Solutions for Secure Machine Learning Against Adversarial Attacks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>70157</spage><epage>70168</epage><pages>70157-70168</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Adversarial examples are perturbed inputs that are designed (from a deep learning network's (DLN) parameter gradients) to mislead the DLN during test time. Intuitively, constraining the dimensionality of inputs or parameters of a network reduces the "space" in which adversarial examples exist. Guided by this intuition, we demonstrate that discretization greatly improves the robustness of the DLNs against adversarial attacks. Specifically, discretizing the input space (or allowed pixel levels from 256 values or 8<inline-formula> <tex-math notation="LaTeX">bit </tex-math></inline-formula> to 4 values or 2<inline-formula> <tex-math notation="LaTeX">bit </tex-math></inline-formula>) extensively improves the adversarial robustness of the DLNs for a substantial range of perturbations for minimal loss in test accuracy. Furthermore, we find that binary neural networks (BNNs) and related variants are intrinsically more robust than their full precision counterparts in adversarial scenarios. Combining input discretization with the BNNs furthers the robustness, even waiving the need for adversarial training for the certain magnitude of perturbation values. We evaluate the effect of discretization on MNIST, CIFAR10, CIFAR100, and ImageNet datasets. Across all datasets, we observe maximal adversarial resistance with 2<inline-formula> <tex-math notation="LaTeX">bit </tex-math></inline-formula> input discretization that incurs an adversarial accuracy loss of just ~1% - 2% as compared to clean test accuracy against single-step attacks. We also show standalone discretization remains vulnerable to stronger multi-step attack scenarios necessitating the use of adversarial training with discretization as an improved defense strategy.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2919463</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4167-6782</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.70157-70168
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2919463
source IEEE Xplore Open Access Journals
subjects Accuracy
Adversarial robustness
binarized neural networks
Data models
Datasets
deep learning
Discretization
discretization techniques
Machine learning
Manifolds
Neural networks
Parameters
Perturbation
Perturbation methods
Predictive models
Robustness
Training
title Discretization Based Solutions for Secure Machine Learning Against Adversarial Attacks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discretization%20Based%20Solutions%20for%20Secure%20Machine%20Learning%20Against%20Adversarial%20Attacks&rft.jtitle=IEEE%20access&rft.au=Panda,%20Priyadarshini&rft.date=2019&rft.volume=7&rft.spage=70157&rft.epage=70168&rft.pages=70157-70168&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2919463&rft_dat=%3Cproquest_cross%3E2455611816%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-f8078972457dd357f6d4726fdce81aa3c47451fe6cb4039505e99edbd76bfed13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455611816&rft_id=info:pmid/&rft_ieee_id=8723317&rfr_iscdi=true