Loading…
VLF Current Distribution and Input Impedance of an Arbitrarily Oriented Linear Antenna in a Cold Plasma
In this paper, we proposed a semianalytical method for calculating the current distribution and input impedance of a very low frequency (VLF: 3-30 kHz) linear antenna of arbitrary orientation in a homogeneous anisotropic cold plasma. By considering the effect of the geomagnetic inclination angle, th...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.80861-80869 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223 |
container_end_page | 80869 |
container_issue | |
container_start_page | 80861 |
container_title | IEEE access |
container_volume | 7 |
creator | He, Tong Zeng, Hui Ran Li, Kai |
description | In this paper, we proposed a semianalytical method for calculating the current distribution and input impedance of a very low frequency (VLF: 3-30 kHz) linear antenna of arbitrary orientation in a homogeneous anisotropic cold plasma. By considering the effect of the geomagnetic inclination angle, the kernel function, in this case, has a more complicated form and requires extra analytical techniques to deal with. The computations show that the amplitude coefficients for the ordinary wave are evidently greater than those for the extraordinary wave. We also found that the shape of the current distribution is not sensitive to the orientation of the antenna, but the total current moment on the antenna will be decreased when the inclination angle becomes larger. Moreover, due to the higher attenuation rates for both the ordinary and extraordinary waves at a propagation direction perpendicular to the magnetic field, the overall trend for the input impedance of the antenna is increasing with the geomagnetic inclination angle. It is then concluded that the optimal posture for a VLF space-borne linear antenna should be as parallel as possible to the direction of the geomagnetic field in order to achieve maximum antenna efficiency. |
doi_str_mv | 10.1109/ACCESS.2019.2922972 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2922972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8736737</ieee_id><doaj_id>oai_doaj_org_article_c7e448afca2a48138243a56f2a34b7f7</doaj_id><sourcerecordid>2455625953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223</originalsourceid><addsrcrecordid>eNpNUcFq3DAQNaWFhjRfkIug591KI8myj4ubtAsLCSTtVYzlUdDilbayfcjfV1uH0LnMzOO9NwOvqm4F3wrB22-7rrt7etoCF-0WWoDWwIfqCkTdbqSW9cf_5s_VzTQdeammQNpcVS-_D_esW3KmOLPvYZpz6Jc5pMgwDmwfz8vM9qczDRgdseQLzHa5D3PGHMZX9pBDUdLADiESZrYrS4zIQjFgXRoH9jjidMIv1SeP40Q3b_26-nV_99z93Bwefuy73WHjFG_mDXBDLUivtfZ-wIZc79Aj-hq84E4MWoEi2aPQnruhh7Ymjb3gF7IGkNfVfvUdEh7tOYcT5lebMNh_QMovFvMc3EjWGVKqQe8QUDVCNqAk6toDStUbb4rX19XrnNOfhabZHtOSY3nfgtK6Bt1qWVhyZbmcpimTf78quL0EZNeA7CUg-xZQUd2uqkBE74rGyNpII_8CPtaMbw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455625953</pqid></control><display><type>article</type><title>VLF Current Distribution and Input Impedance of an Arbitrarily Oriented Linear Antenna in a Cold Plasma</title><source>IEEE Xplore Open Access Journals</source><creator>He, Tong ; Zeng, Hui Ran ; Li, Kai</creator><creatorcontrib>He, Tong ; Zeng, Hui Ran ; Li, Kai</creatorcontrib><description>In this paper, we proposed a semianalytical method for calculating the current distribution and input impedance of a very low frequency (VLF: 3-30 kHz) linear antenna of arbitrary orientation in a homogeneous anisotropic cold plasma. By considering the effect of the geomagnetic inclination angle, the kernel function, in this case, has a more complicated form and requires extra analytical techniques to deal with. The computations show that the amplitude coefficients for the ordinary wave are evidently greater than those for the extraordinary wave. We also found that the shape of the current distribution is not sensitive to the orientation of the antenna, but the total current moment on the antenna will be decreased when the inclination angle becomes larger. Moreover, due to the higher attenuation rates for both the ordinary and extraordinary waves at a propagation direction perpendicular to the magnetic field, the overall trend for the input impedance of the antenna is increasing with the geomagnetic inclination angle. It is then concluded that the optimal posture for a VLF space-borne linear antenna should be as parallel as possible to the direction of the geomagnetic field in order to achieve maximum antenna efficiency.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2922972</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anisotropic plasma ; Antennas ; arbitrary oriented linear antenna ; Cold plasmas ; Current distribution ; Dipole antennas ; Geomagnetic field ; Geomagnetism ; Impedance ; Inclination angle ; Input impedance ; Kernel functions ; Perpendicular magnetic anisotropy ; Plasmas ; Very Low Frequencies ; VLF electromagnetic wave ; Wave attenuation ; Wave propagation</subject><ispartof>IEEE access, 2019, Vol.7, p.80861-80869</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223</citedby><cites>FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223</cites><orcidid>0000-0001-5867-1323 ; 0000-0003-1379-4092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8736737$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>He, Tong</creatorcontrib><creatorcontrib>Zeng, Hui Ran</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><title>VLF Current Distribution and Input Impedance of an Arbitrarily Oriented Linear Antenna in a Cold Plasma</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we proposed a semianalytical method for calculating the current distribution and input impedance of a very low frequency (VLF: 3-30 kHz) linear antenna of arbitrary orientation in a homogeneous anisotropic cold plasma. By considering the effect of the geomagnetic inclination angle, the kernel function, in this case, has a more complicated form and requires extra analytical techniques to deal with. The computations show that the amplitude coefficients for the ordinary wave are evidently greater than those for the extraordinary wave. We also found that the shape of the current distribution is not sensitive to the orientation of the antenna, but the total current moment on the antenna will be decreased when the inclination angle becomes larger. Moreover, due to the higher attenuation rates for both the ordinary and extraordinary waves at a propagation direction perpendicular to the magnetic field, the overall trend for the input impedance of the antenna is increasing with the geomagnetic inclination angle. It is then concluded that the optimal posture for a VLF space-borne linear antenna should be as parallel as possible to the direction of the geomagnetic field in order to achieve maximum antenna efficiency.</description><subject>Anisotropic plasma</subject><subject>Antennas</subject><subject>arbitrary oriented linear antenna</subject><subject>Cold plasmas</subject><subject>Current distribution</subject><subject>Dipole antennas</subject><subject>Geomagnetic field</subject><subject>Geomagnetism</subject><subject>Impedance</subject><subject>Inclination angle</subject><subject>Input impedance</subject><subject>Kernel functions</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Plasmas</subject><subject>Very Low Frequencies</subject><subject>VLF electromagnetic wave</subject><subject>Wave attenuation</subject><subject>Wave propagation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFq3DAQNaWFhjRfkIug591KI8myj4ubtAsLCSTtVYzlUdDilbayfcjfV1uH0LnMzOO9NwOvqm4F3wrB22-7rrt7etoCF-0WWoDWwIfqCkTdbqSW9cf_5s_VzTQdeammQNpcVS-_D_esW3KmOLPvYZpz6Jc5pMgwDmwfz8vM9qczDRgdseQLzHa5D3PGHMZX9pBDUdLADiESZrYrS4zIQjFgXRoH9jjidMIv1SeP40Q3b_26-nV_99z93Bwefuy73WHjFG_mDXBDLUivtfZ-wIZc79Aj-hq84E4MWoEi2aPQnruhh7Ymjb3gF7IGkNfVfvUdEh7tOYcT5lebMNh_QMovFvMc3EjWGVKqQe8QUDVCNqAk6toDStUbb4rX19XrnNOfhabZHtOSY3nfgtK6Bt1qWVhyZbmcpimTf78quL0EZNeA7CUg-xZQUd2uqkBE74rGyNpII_8CPtaMbw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>He, Tong</creator><creator>Zeng, Hui Ran</creator><creator>Li, Kai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5867-1323</orcidid><orcidid>https://orcid.org/0000-0003-1379-4092</orcidid></search><sort><creationdate>2019</creationdate><title>VLF Current Distribution and Input Impedance of an Arbitrarily Oriented Linear Antenna in a Cold Plasma</title><author>He, Tong ; Zeng, Hui Ran ; Li, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropic plasma</topic><topic>Antennas</topic><topic>arbitrary oriented linear antenna</topic><topic>Cold plasmas</topic><topic>Current distribution</topic><topic>Dipole antennas</topic><topic>Geomagnetic field</topic><topic>Geomagnetism</topic><topic>Impedance</topic><topic>Inclination angle</topic><topic>Input impedance</topic><topic>Kernel functions</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Plasmas</topic><topic>Very Low Frequencies</topic><topic>VLF electromagnetic wave</topic><topic>Wave attenuation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Tong</creatorcontrib><creatorcontrib>Zeng, Hui Ran</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Tong</au><au>Zeng, Hui Ran</au><au>Li, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VLF Current Distribution and Input Impedance of an Arbitrarily Oriented Linear Antenna in a Cold Plasma</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>80861</spage><epage>80869</epage><pages>80861-80869</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we proposed a semianalytical method for calculating the current distribution and input impedance of a very low frequency (VLF: 3-30 kHz) linear antenna of arbitrary orientation in a homogeneous anisotropic cold plasma. By considering the effect of the geomagnetic inclination angle, the kernel function, in this case, has a more complicated form and requires extra analytical techniques to deal with. The computations show that the amplitude coefficients for the ordinary wave are evidently greater than those for the extraordinary wave. We also found that the shape of the current distribution is not sensitive to the orientation of the antenna, but the total current moment on the antenna will be decreased when the inclination angle becomes larger. Moreover, due to the higher attenuation rates for both the ordinary and extraordinary waves at a propagation direction perpendicular to the magnetic field, the overall trend for the input impedance of the antenna is increasing with the geomagnetic inclination angle. It is then concluded that the optimal posture for a VLF space-borne linear antenna should be as parallel as possible to the direction of the geomagnetic field in order to achieve maximum antenna efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2922972</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5867-1323</orcidid><orcidid>https://orcid.org/0000-0003-1379-4092</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.80861-80869 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2922972 |
source | IEEE Xplore Open Access Journals |
subjects | Anisotropic plasma Antennas arbitrary oriented linear antenna Cold plasmas Current distribution Dipole antennas Geomagnetic field Geomagnetism Impedance Inclination angle Input impedance Kernel functions Perpendicular magnetic anisotropy Plasmas Very Low Frequencies VLF electromagnetic wave Wave attenuation Wave propagation |
title | VLF Current Distribution and Input Impedance of an Arbitrarily Oriented Linear Antenna in a Cold Plasma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VLF%20Current%20Distribution%20and%20Input%20Impedance%20of%20an%20Arbitrarily%20Oriented%20Linear%20Antenna%20in%20a%20Cold%20Plasma&rft.jtitle=IEEE%20access&rft.au=He,%20Tong&rft.date=2019&rft.volume=7&rft.spage=80861&rft.epage=80869&rft.pages=80861-80869&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2922972&rft_dat=%3Cproquest_cross%3E2455625953%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455625953&rft_id=info:pmid/&rft_ieee_id=8736737&rfr_iscdi=true |