Loading…

VLF Current Distribution and Input Impedance of an Arbitrarily Oriented Linear Antenna in a Cold Plasma

In this paper, we proposed a semianalytical method for calculating the current distribution and input impedance of a very low frequency (VLF: 3-30 kHz) linear antenna of arbitrary orientation in a homogeneous anisotropic cold plasma. By considering the effect of the geomagnetic inclination angle, th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.80861-80869
Main Authors: He, Tong, Zeng, Hui Ran, Li, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223
cites cdi_FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223
container_end_page 80869
container_issue
container_start_page 80861
container_title IEEE access
container_volume 7
creator He, Tong
Zeng, Hui Ran
Li, Kai
description In this paper, we proposed a semianalytical method for calculating the current distribution and input impedance of a very low frequency (VLF: 3-30 kHz) linear antenna of arbitrary orientation in a homogeneous anisotropic cold plasma. By considering the effect of the geomagnetic inclination angle, the kernel function, in this case, has a more complicated form and requires extra analytical techniques to deal with. The computations show that the amplitude coefficients for the ordinary wave are evidently greater than those for the extraordinary wave. We also found that the shape of the current distribution is not sensitive to the orientation of the antenna, but the total current moment on the antenna will be decreased when the inclination angle becomes larger. Moreover, due to the higher attenuation rates for both the ordinary and extraordinary waves at a propagation direction perpendicular to the magnetic field, the overall trend for the input impedance of the antenna is increasing with the geomagnetic inclination angle. It is then concluded that the optimal posture for a VLF space-borne linear antenna should be as parallel as possible to the direction of the geomagnetic field in order to achieve maximum antenna efficiency.
doi_str_mv 10.1109/ACCESS.2019.2922972
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2922972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8736737</ieee_id><doaj_id>oai_doaj_org_article_c7e448afca2a48138243a56f2a34b7f7</doaj_id><sourcerecordid>2455625953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223</originalsourceid><addsrcrecordid>eNpNUcFq3DAQNaWFhjRfkIug591KI8myj4ubtAsLCSTtVYzlUdDilbayfcjfV1uH0LnMzOO9NwOvqm4F3wrB22-7rrt7etoCF-0WWoDWwIfqCkTdbqSW9cf_5s_VzTQdeammQNpcVS-_D_esW3KmOLPvYZpz6Jc5pMgwDmwfz8vM9qczDRgdseQLzHa5D3PGHMZX9pBDUdLADiESZrYrS4zIQjFgXRoH9jjidMIv1SeP40Q3b_26-nV_99z93Bwefuy73WHjFG_mDXBDLUivtfZ-wIZc79Aj-hq84E4MWoEi2aPQnruhh7Ymjb3gF7IGkNfVfvUdEh7tOYcT5lebMNh_QMovFvMc3EjWGVKqQe8QUDVCNqAk6toDStUbb4rX19XrnNOfhabZHtOSY3nfgtK6Bt1qWVhyZbmcpimTf78quL0EZNeA7CUg-xZQUd2uqkBE74rGyNpII_8CPtaMbw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455625953</pqid></control><display><type>article</type><title>VLF Current Distribution and Input Impedance of an Arbitrarily Oriented Linear Antenna in a Cold Plasma</title><source>IEEE Xplore Open Access Journals</source><creator>He, Tong ; Zeng, Hui Ran ; Li, Kai</creator><creatorcontrib>He, Tong ; Zeng, Hui Ran ; Li, Kai</creatorcontrib><description>In this paper, we proposed a semianalytical method for calculating the current distribution and input impedance of a very low frequency (VLF: 3-30 kHz) linear antenna of arbitrary orientation in a homogeneous anisotropic cold plasma. By considering the effect of the geomagnetic inclination angle, the kernel function, in this case, has a more complicated form and requires extra analytical techniques to deal with. The computations show that the amplitude coefficients for the ordinary wave are evidently greater than those for the extraordinary wave. We also found that the shape of the current distribution is not sensitive to the orientation of the antenna, but the total current moment on the antenna will be decreased when the inclination angle becomes larger. Moreover, due to the higher attenuation rates for both the ordinary and extraordinary waves at a propagation direction perpendicular to the magnetic field, the overall trend for the input impedance of the antenna is increasing with the geomagnetic inclination angle. It is then concluded that the optimal posture for a VLF space-borne linear antenna should be as parallel as possible to the direction of the geomagnetic field in order to achieve maximum antenna efficiency.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2922972</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anisotropic plasma ; Antennas ; arbitrary oriented linear antenna ; Cold plasmas ; Current distribution ; Dipole antennas ; Geomagnetic field ; Geomagnetism ; Impedance ; Inclination angle ; Input impedance ; Kernel functions ; Perpendicular magnetic anisotropy ; Plasmas ; Very Low Frequencies ; VLF electromagnetic wave ; Wave attenuation ; Wave propagation</subject><ispartof>IEEE access, 2019, Vol.7, p.80861-80869</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223</citedby><cites>FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223</cites><orcidid>0000-0001-5867-1323 ; 0000-0003-1379-4092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8736737$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>He, Tong</creatorcontrib><creatorcontrib>Zeng, Hui Ran</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><title>VLF Current Distribution and Input Impedance of an Arbitrarily Oriented Linear Antenna in a Cold Plasma</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, we proposed a semianalytical method for calculating the current distribution and input impedance of a very low frequency (VLF: 3-30 kHz) linear antenna of arbitrary orientation in a homogeneous anisotropic cold plasma. By considering the effect of the geomagnetic inclination angle, the kernel function, in this case, has a more complicated form and requires extra analytical techniques to deal with. The computations show that the amplitude coefficients for the ordinary wave are evidently greater than those for the extraordinary wave. We also found that the shape of the current distribution is not sensitive to the orientation of the antenna, but the total current moment on the antenna will be decreased when the inclination angle becomes larger. Moreover, due to the higher attenuation rates for both the ordinary and extraordinary waves at a propagation direction perpendicular to the magnetic field, the overall trend for the input impedance of the antenna is increasing with the geomagnetic inclination angle. It is then concluded that the optimal posture for a VLF space-borne linear antenna should be as parallel as possible to the direction of the geomagnetic field in order to achieve maximum antenna efficiency.</description><subject>Anisotropic plasma</subject><subject>Antennas</subject><subject>arbitrary oriented linear antenna</subject><subject>Cold plasmas</subject><subject>Current distribution</subject><subject>Dipole antennas</subject><subject>Geomagnetic field</subject><subject>Geomagnetism</subject><subject>Impedance</subject><subject>Inclination angle</subject><subject>Input impedance</subject><subject>Kernel functions</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Plasmas</subject><subject>Very Low Frequencies</subject><subject>VLF electromagnetic wave</subject><subject>Wave attenuation</subject><subject>Wave propagation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFq3DAQNaWFhjRfkIug591KI8myj4ubtAsLCSTtVYzlUdDilbayfcjfV1uH0LnMzOO9NwOvqm4F3wrB22-7rrt7etoCF-0WWoDWwIfqCkTdbqSW9cf_5s_VzTQdeammQNpcVS-_D_esW3KmOLPvYZpz6Jc5pMgwDmwfz8vM9qczDRgdseQLzHa5D3PGHMZX9pBDUdLADiESZrYrS4zIQjFgXRoH9jjidMIv1SeP40Q3b_26-nV_99z93Bwefuy73WHjFG_mDXBDLUivtfZ-wIZc79Aj-hq84E4MWoEi2aPQnruhh7Ymjb3gF7IGkNfVfvUdEh7tOYcT5lebMNh_QMovFvMc3EjWGVKqQe8QUDVCNqAk6toDStUbb4rX19XrnNOfhabZHtOSY3nfgtK6Bt1qWVhyZbmcpimTf78quL0EZNeA7CUg-xZQUd2uqkBE74rGyNpII_8CPtaMbw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>He, Tong</creator><creator>Zeng, Hui Ran</creator><creator>Li, Kai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5867-1323</orcidid><orcidid>https://orcid.org/0000-0003-1379-4092</orcidid></search><sort><creationdate>2019</creationdate><title>VLF Current Distribution and Input Impedance of an Arbitrarily Oriented Linear Antenna in a Cold Plasma</title><author>He, Tong ; Zeng, Hui Ran ; Li, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropic plasma</topic><topic>Antennas</topic><topic>arbitrary oriented linear antenna</topic><topic>Cold plasmas</topic><topic>Current distribution</topic><topic>Dipole antennas</topic><topic>Geomagnetic field</topic><topic>Geomagnetism</topic><topic>Impedance</topic><topic>Inclination angle</topic><topic>Input impedance</topic><topic>Kernel functions</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Plasmas</topic><topic>Very Low Frequencies</topic><topic>VLF electromagnetic wave</topic><topic>Wave attenuation</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Tong</creatorcontrib><creatorcontrib>Zeng, Hui Ran</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Tong</au><au>Zeng, Hui Ran</au><au>Li, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VLF Current Distribution and Input Impedance of an Arbitrarily Oriented Linear Antenna in a Cold Plasma</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>80861</spage><epage>80869</epage><pages>80861-80869</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, we proposed a semianalytical method for calculating the current distribution and input impedance of a very low frequency (VLF: 3-30 kHz) linear antenna of arbitrary orientation in a homogeneous anisotropic cold plasma. By considering the effect of the geomagnetic inclination angle, the kernel function, in this case, has a more complicated form and requires extra analytical techniques to deal with. The computations show that the amplitude coefficients for the ordinary wave are evidently greater than those for the extraordinary wave. We also found that the shape of the current distribution is not sensitive to the orientation of the antenna, but the total current moment on the antenna will be decreased when the inclination angle becomes larger. Moreover, due to the higher attenuation rates for both the ordinary and extraordinary waves at a propagation direction perpendicular to the magnetic field, the overall trend for the input impedance of the antenna is increasing with the geomagnetic inclination angle. It is then concluded that the optimal posture for a VLF space-borne linear antenna should be as parallel as possible to the direction of the geomagnetic field in order to achieve maximum antenna efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2922972</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5867-1323</orcidid><orcidid>https://orcid.org/0000-0003-1379-4092</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.80861-80869
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2922972
source IEEE Xplore Open Access Journals
subjects Anisotropic plasma
Antennas
arbitrary oriented linear antenna
Cold plasmas
Current distribution
Dipole antennas
Geomagnetic field
Geomagnetism
Impedance
Inclination angle
Input impedance
Kernel functions
Perpendicular magnetic anisotropy
Plasmas
Very Low Frequencies
VLF electromagnetic wave
Wave attenuation
Wave propagation
title VLF Current Distribution and Input Impedance of an Arbitrarily Oriented Linear Antenna in a Cold Plasma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VLF%20Current%20Distribution%20and%20Input%20Impedance%20of%20an%20Arbitrarily%20Oriented%20Linear%20Antenna%20in%20a%20Cold%20Plasma&rft.jtitle=IEEE%20access&rft.au=He,%20Tong&rft.date=2019&rft.volume=7&rft.spage=80861&rft.epage=80869&rft.pages=80861-80869&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2922972&rft_dat=%3Cproquest_cross%3E2455625953%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-207e923f555ffda8ecbcafaaf62f10c1d5424e3ba15f0cdb296e5ab10fda85223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455625953&rft_id=info:pmid/&rft_ieee_id=8736737&rfr_iscdi=true