Loading…

Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding

Motion compensated prediction is one of the essential methods to reduce temporal redundancy in inter coding. The target of motion compensated prediction is to predict the current frame from the list of reference frames. Recent video coding standards commonly use interpolation filters to obtain sub-p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.112535-112543
Main Authors: Pham, Chi Do-Kim, Zhou, Jinjia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3
cites cdi_FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3
container_end_page 112543
container_issue
container_start_page 112535
container_title IEEE access
container_volume 7
creator Pham, Chi Do-Kim
Zhou, Jinjia
description Motion compensated prediction is one of the essential methods to reduce temporal redundancy in inter coding. The target of motion compensated prediction is to predict the current frame from the list of reference frames. Recent video coding standards commonly use interpolation filters to obtain sub-pixel for the best matching block located in the fractional position of the reference frame. However, the fixed filters are not flexible to adapt to the variety of natural video contents. Inspired by the success of Convolutional Neural Network (CNN) in super-resolution, we propose CNN-based fractional interpolation for Luminance (Luma) and Chrominance (Chroma) components in motion compensated prediction to improve the coding efficiency. Moreover, two syntax elements indicate interpolation methods for the Luminance and Chrominance components, have been added to bin-string and encoded by CABAC using regular mode. As a result, our proposal gains 2.9%, 0.3%, 0.6% Y, U, V BD-rate reduction, respectively, under low delay P configuration.
doi_str_mv 10.1109/ACCESS.2019.2935378
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2935378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8798606</ieee_id><doaj_id>oai_doaj_org_article_0c42bc7559d04f0ba1d8fc91da9eb499</doaj_id><sourcerecordid>2455634224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVKVf0Eskzil24vhxLKFApUgcClytjb0pqdo4OOmBv8clVcVednY1M6vVRNGckgWlRD0si2K12SxSQtUiVVmeCXkVTVLKVRIGfv0P30azvt-RUDKscjGJyifELi4RfNu02-QRerRxeTxADK2Niy_vAnz2YIbGtbCP1-2AvnN7OM1x08afjUUXF84G-V10U8O-x9m5T6OP59V78ZqUby_rYlkmhhE5JBIlVRVVxhCRgrRMcKiZQEYtEZSg4aoyiDWitAJ5ppi0ComVFXCmmMmm0Xr0tQ52uvPNAfyPdtDov4XzWw1-aMweNTEsrYzIc2UJq0kF1MraKGpBYcWUCl73o1fn3fcR-0Hv3NGHV3udsjznGUtTFljZyDLe9b3H-nKVEn1KQY8p6FMK-pxCUM1HVYOIF4UUSnLCs1-bbIKu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455634224</pqid></control><display><type>article</type><title>Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding</title><source>IEEE Xplore Open Access Journals</source><creator>Pham, Chi Do-Kim ; Zhou, Jinjia</creator><creatorcontrib>Pham, Chi Do-Kim ; Zhou, Jinjia</creatorcontrib><description>Motion compensated prediction is one of the essential methods to reduce temporal redundancy in inter coding. The target of motion compensated prediction is to predict the current frame from the list of reference frames. Recent video coding standards commonly use interpolation filters to obtain sub-pixel for the best matching block located in the fractional position of the reference frame. However, the fixed filters are not flexible to adapt to the variety of natural video contents. Inspired by the success of Convolutional Neural Network (CNN) in super-resolution, we propose CNN-based fractional interpolation for Luminance (Luma) and Chrominance (Chroma) components in motion compensated prediction to improve the coding efficiency. Moreover, two syntax elements indicate interpolation methods for the Luminance and Chrominance components, have been added to bin-string and encoded by CABAC using regular mode. As a result, our proposal gains 2.9%, 0.3%, 0.6% Y, U, V BD-rate reduction, respectively, under low delay P configuration.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2935378</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Coding standards ; Convolution neural network (CNN) ; Deep learning ; Encoding ; fractional interpolation ; Image resolution ; Interpolation ; motion compensated prediction ; Redundancy ; Signal resolution ; Training ; Video coding</subject><ispartof>IEEE access, 2019, Vol.7, p.112535-112543</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3</citedby><cites>FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3</cites><orcidid>0000-0003-0912-9110 ; 0000-0002-5078-0522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8798606$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4014,27624,27914,27915,27916,54924</link.rule.ids></links><search><creatorcontrib>Pham, Chi Do-Kim</creatorcontrib><creatorcontrib>Zhou, Jinjia</creatorcontrib><title>Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding</title><title>IEEE access</title><addtitle>Access</addtitle><description>Motion compensated prediction is one of the essential methods to reduce temporal redundancy in inter coding. The target of motion compensated prediction is to predict the current frame from the list of reference frames. Recent video coding standards commonly use interpolation filters to obtain sub-pixel for the best matching block located in the fractional position of the reference frame. However, the fixed filters are not flexible to adapt to the variety of natural video contents. Inspired by the success of Convolutional Neural Network (CNN) in super-resolution, we propose CNN-based fractional interpolation for Luminance (Luma) and Chrominance (Chroma) components in motion compensated prediction to improve the coding efficiency. Moreover, two syntax elements indicate interpolation methods for the Luminance and Chrominance components, have been added to bin-string and encoded by CABAC using regular mode. As a result, our proposal gains 2.9%, 0.3%, 0.6% Y, U, V BD-rate reduction, respectively, under low delay P configuration.</description><subject>Artificial neural networks</subject><subject>Coding standards</subject><subject>Convolution neural network (CNN)</subject><subject>Deep learning</subject><subject>Encoding</subject><subject>fractional interpolation</subject><subject>Image resolution</subject><subject>Interpolation</subject><subject>motion compensated prediction</subject><subject>Redundancy</subject><subject>Signal resolution</subject><subject>Training</subject><subject>Video coding</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVKVf0Eskzil24vhxLKFApUgcClytjb0pqdo4OOmBv8clVcVednY1M6vVRNGckgWlRD0si2K12SxSQtUiVVmeCXkVTVLKVRIGfv0P30azvt-RUDKscjGJyifELi4RfNu02-QRerRxeTxADK2Niy_vAnz2YIbGtbCP1-2AvnN7OM1x08afjUUXF84G-V10U8O-x9m5T6OP59V78ZqUby_rYlkmhhE5JBIlVRVVxhCRgrRMcKiZQEYtEZSg4aoyiDWitAJ5ppi0ComVFXCmmMmm0Xr0tQ52uvPNAfyPdtDov4XzWw1-aMweNTEsrYzIc2UJq0kF1MraKGpBYcWUCl73o1fn3fcR-0Hv3NGHV3udsjznGUtTFljZyDLe9b3H-nKVEn1KQY8p6FMK-pxCUM1HVYOIF4UUSnLCs1-bbIKu</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Pham, Chi Do-Kim</creator><creator>Zhou, Jinjia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0912-9110</orcidid><orcidid>https://orcid.org/0000-0002-5078-0522</orcidid></search><sort><creationdate>2019</creationdate><title>Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding</title><author>Pham, Chi Do-Kim ; Zhou, Jinjia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Coding standards</topic><topic>Convolution neural network (CNN)</topic><topic>Deep learning</topic><topic>Encoding</topic><topic>fractional interpolation</topic><topic>Image resolution</topic><topic>Interpolation</topic><topic>motion compensated prediction</topic><topic>Redundancy</topic><topic>Signal resolution</topic><topic>Training</topic><topic>Video coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Chi Do-Kim</creatorcontrib><creatorcontrib>Zhou, Jinjia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Chi Do-Kim</au><au>Zhou, Jinjia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>112535</spage><epage>112543</epage><pages>112535-112543</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Motion compensated prediction is one of the essential methods to reduce temporal redundancy in inter coding. The target of motion compensated prediction is to predict the current frame from the list of reference frames. Recent video coding standards commonly use interpolation filters to obtain sub-pixel for the best matching block located in the fractional position of the reference frame. However, the fixed filters are not flexible to adapt to the variety of natural video contents. Inspired by the success of Convolutional Neural Network (CNN) in super-resolution, we propose CNN-based fractional interpolation for Luminance (Luma) and Chrominance (Chroma) components in motion compensated prediction to improve the coding efficiency. Moreover, two syntax elements indicate interpolation methods for the Luminance and Chrominance components, have been added to bin-string and encoded by CABAC using regular mode. As a result, our proposal gains 2.9%, 0.3%, 0.6% Y, U, V BD-rate reduction, respectively, under low delay P configuration.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2935378</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0912-9110</orcidid><orcidid>https://orcid.org/0000-0002-5078-0522</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.112535-112543
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2935378
source IEEE Xplore Open Access Journals
subjects Artificial neural networks
Coding standards
Convolution neural network (CNN)
Deep learning
Encoding
fractional interpolation
Image resolution
Interpolation
motion compensated prediction
Redundancy
Signal resolution
Training
Video coding
title Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Luma%20and%20Chroma%20Fractional%20Interpolation%20in%20Video%20Coding&rft.jtitle=IEEE%20access&rft.au=Pham,%20Chi%20Do-Kim&rft.date=2019&rft.volume=7&rft.spage=112535&rft.epage=112543&rft.pages=112535-112543&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2935378&rft_dat=%3Cproquest_cross%3E2455634224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455634224&rft_id=info:pmid/&rft_ieee_id=8798606&rfr_iscdi=true