Loading…
Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding
Motion compensated prediction is one of the essential methods to reduce temporal redundancy in inter coding. The target of motion compensated prediction is to predict the current frame from the list of reference frames. Recent video coding standards commonly use interpolation filters to obtain sub-p...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.112535-112543 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3 |
container_end_page | 112543 |
container_issue | |
container_start_page | 112535 |
container_title | IEEE access |
container_volume | 7 |
creator | Pham, Chi Do-Kim Zhou, Jinjia |
description | Motion compensated prediction is one of the essential methods to reduce temporal redundancy in inter coding. The target of motion compensated prediction is to predict the current frame from the list of reference frames. Recent video coding standards commonly use interpolation filters to obtain sub-pixel for the best matching block located in the fractional position of the reference frame. However, the fixed filters are not flexible to adapt to the variety of natural video contents. Inspired by the success of Convolutional Neural Network (CNN) in super-resolution, we propose CNN-based fractional interpolation for Luminance (Luma) and Chrominance (Chroma) components in motion compensated prediction to improve the coding efficiency. Moreover, two syntax elements indicate interpolation methods for the Luminance and Chrominance components, have been added to bin-string and encoded by CABAC using regular mode. As a result, our proposal gains 2.9%, 0.3%, 0.6% Y, U, V BD-rate reduction, respectively, under low delay P configuration. |
doi_str_mv | 10.1109/ACCESS.2019.2935378 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2935378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8798606</ieee_id><doaj_id>oai_doaj_org_article_0c42bc7559d04f0ba1d8fc91da9eb499</doaj_id><sourcerecordid>2455634224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIVKVf0Eskzil24vhxLKFApUgcClytjb0pqdo4OOmBv8clVcVednY1M6vVRNGckgWlRD0si2K12SxSQtUiVVmeCXkVTVLKVRIGfv0P30azvt-RUDKscjGJyifELi4RfNu02-QRerRxeTxADK2Niy_vAnz2YIbGtbCP1-2AvnN7OM1x08afjUUXF84G-V10U8O-x9m5T6OP59V78ZqUby_rYlkmhhE5JBIlVRVVxhCRgrRMcKiZQEYtEZSg4aoyiDWitAJ5ppi0ComVFXCmmMmm0Xr0tQ52uvPNAfyPdtDov4XzWw1-aMweNTEsrYzIc2UJq0kF1MraKGpBYcWUCl73o1fn3fcR-0Hv3NGHV3udsjznGUtTFljZyDLe9b3H-nKVEn1KQY8p6FMK-pxCUM1HVYOIF4UUSnLCs1-bbIKu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455634224</pqid></control><display><type>article</type><title>Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding</title><source>IEEE Xplore Open Access Journals</source><creator>Pham, Chi Do-Kim ; Zhou, Jinjia</creator><creatorcontrib>Pham, Chi Do-Kim ; Zhou, Jinjia</creatorcontrib><description>Motion compensated prediction is one of the essential methods to reduce temporal redundancy in inter coding. The target of motion compensated prediction is to predict the current frame from the list of reference frames. Recent video coding standards commonly use interpolation filters to obtain sub-pixel for the best matching block located in the fractional position of the reference frame. However, the fixed filters are not flexible to adapt to the variety of natural video contents. Inspired by the success of Convolutional Neural Network (CNN) in super-resolution, we propose CNN-based fractional interpolation for Luminance (Luma) and Chrominance (Chroma) components in motion compensated prediction to improve the coding efficiency. Moreover, two syntax elements indicate interpolation methods for the Luminance and Chrominance components, have been added to bin-string and encoded by CABAC using regular mode. As a result, our proposal gains 2.9%, 0.3%, 0.6% Y, U, V BD-rate reduction, respectively, under low delay P configuration.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2935378</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Coding standards ; Convolution neural network (CNN) ; Deep learning ; Encoding ; fractional interpolation ; Image resolution ; Interpolation ; motion compensated prediction ; Redundancy ; Signal resolution ; Training ; Video coding</subject><ispartof>IEEE access, 2019, Vol.7, p.112535-112543</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3</citedby><cites>FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3</cites><orcidid>0000-0003-0912-9110 ; 0000-0002-5078-0522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8798606$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4014,27624,27914,27915,27916,54924</link.rule.ids></links><search><creatorcontrib>Pham, Chi Do-Kim</creatorcontrib><creatorcontrib>Zhou, Jinjia</creatorcontrib><title>Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding</title><title>IEEE access</title><addtitle>Access</addtitle><description>Motion compensated prediction is one of the essential methods to reduce temporal redundancy in inter coding. The target of motion compensated prediction is to predict the current frame from the list of reference frames. Recent video coding standards commonly use interpolation filters to obtain sub-pixel for the best matching block located in the fractional position of the reference frame. However, the fixed filters are not flexible to adapt to the variety of natural video contents. Inspired by the success of Convolutional Neural Network (CNN) in super-resolution, we propose CNN-based fractional interpolation for Luminance (Luma) and Chrominance (Chroma) components in motion compensated prediction to improve the coding efficiency. Moreover, two syntax elements indicate interpolation methods for the Luminance and Chrominance components, have been added to bin-string and encoded by CABAC using regular mode. As a result, our proposal gains 2.9%, 0.3%, 0.6% Y, U, V BD-rate reduction, respectively, under low delay P configuration.</description><subject>Artificial neural networks</subject><subject>Coding standards</subject><subject>Convolution neural network (CNN)</subject><subject>Deep learning</subject><subject>Encoding</subject><subject>fractional interpolation</subject><subject>Image resolution</subject><subject>Interpolation</subject><subject>motion compensated prediction</subject><subject>Redundancy</subject><subject>Signal resolution</subject><subject>Training</subject><subject>Video coding</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIVKVf0Eskzil24vhxLKFApUgcClytjb0pqdo4OOmBv8clVcVednY1M6vVRNGckgWlRD0si2K12SxSQtUiVVmeCXkVTVLKVRIGfv0P30azvt-RUDKscjGJyifELi4RfNu02-QRerRxeTxADK2Niy_vAnz2YIbGtbCP1-2AvnN7OM1x08afjUUXF84G-V10U8O-x9m5T6OP59V78ZqUby_rYlkmhhE5JBIlVRVVxhCRgrRMcKiZQEYtEZSg4aoyiDWitAJ5ppi0ComVFXCmmMmm0Xr0tQ52uvPNAfyPdtDov4XzWw1-aMweNTEsrYzIc2UJq0kF1MraKGpBYcWUCl73o1fn3fcR-0Hv3NGHV3udsjznGUtTFljZyDLe9b3H-nKVEn1KQY8p6FMK-pxCUM1HVYOIF4UUSnLCs1-bbIKu</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Pham, Chi Do-Kim</creator><creator>Zhou, Jinjia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0912-9110</orcidid><orcidid>https://orcid.org/0000-0002-5078-0522</orcidid></search><sort><creationdate>2019</creationdate><title>Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding</title><author>Pham, Chi Do-Kim ; Zhou, Jinjia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Coding standards</topic><topic>Convolution neural network (CNN)</topic><topic>Deep learning</topic><topic>Encoding</topic><topic>fractional interpolation</topic><topic>Image resolution</topic><topic>Interpolation</topic><topic>motion compensated prediction</topic><topic>Redundancy</topic><topic>Signal resolution</topic><topic>Training</topic><topic>Video coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Chi Do-Kim</creatorcontrib><creatorcontrib>Zhou, Jinjia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Chi Do-Kim</au><au>Zhou, Jinjia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>112535</spage><epage>112543</epage><pages>112535-112543</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Motion compensated prediction is one of the essential methods to reduce temporal redundancy in inter coding. The target of motion compensated prediction is to predict the current frame from the list of reference frames. Recent video coding standards commonly use interpolation filters to obtain sub-pixel for the best matching block located in the fractional position of the reference frame. However, the fixed filters are not flexible to adapt to the variety of natural video contents. Inspired by the success of Convolutional Neural Network (CNN) in super-resolution, we propose CNN-based fractional interpolation for Luminance (Luma) and Chrominance (Chroma) components in motion compensated prediction to improve the coding efficiency. Moreover, two syntax elements indicate interpolation methods for the Luminance and Chrominance components, have been added to bin-string and encoded by CABAC using regular mode. As a result, our proposal gains 2.9%, 0.3%, 0.6% Y, U, V BD-rate reduction, respectively, under low delay P configuration.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2935378</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0912-9110</orcidid><orcidid>https://orcid.org/0000-0002-5078-0522</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.112535-112543 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2935378 |
source | IEEE Xplore Open Access Journals |
subjects | Artificial neural networks Coding standards Convolution neural network (CNN) Deep learning Encoding fractional interpolation Image resolution Interpolation motion compensated prediction Redundancy Signal resolution Training Video coding |
title | Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Luma%20and%20Chroma%20Fractional%20Interpolation%20in%20Video%20Coding&rft.jtitle=IEEE%20access&rft.au=Pham,%20Chi%20Do-Kim&rft.date=2019&rft.volume=7&rft.spage=112535&rft.epage=112543&rft.pages=112535-112543&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2935378&rft_dat=%3Cproquest_cross%3E2455634224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-8e819b19cc072a8d476af47e41d0710ec69bceefee8d7e63948d9e0d8ba6494c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455634224&rft_id=info:pmid/&rft_ieee_id=8798606&rfr_iscdi=true |