Loading…
Multi-agent Fault-tolerant Control Based on Distributed Adaptive Consensus
This paper proposes a distributed adaptive control approach based on consensus theory so that a multi-agent formation can still complete the task despite the local fault of the leader for the multiagent formation system. The controlled object consists of four agents that form a triangle formation sy...
Saved in:
Published in: | IEEE access 2019-01, Vol.7, p.1-1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 7 |
creator | Zhang, Pu Xue, Huifeng Gao, Shan |
description | This paper proposes a distributed adaptive control approach based on consensus theory so that a multi-agent formation can still complete the task despite the local fault of the leader for the multiagent formation system. The controlled object consists of four agents that form a triangle formation system, where one agent acts as the vertex of the triangle, and the remaining agents act as followers in a line. In addition, the speed of the leader is the forward direction of the formation, and the followers are behind the leader. Based on graph theory, the distributed adaptive updating of the agents' local information parameters are conducted, and the distributed adaptive control law is used to supplement the influence of the leader's fault in the multi-agent formation. According to the local information of adjacent agents, an overall distributed adaptive fault-tolerant control law is designed, and the stability of the designed controller is proved by constructing the Lyapunov function. Meanwhile, the relative distance error between the horizontal direction and longitudinal direction of the leader-follower converge to zero. The simulation results show that the proposed adaptive control approach has good robustness, which provides a theoretical basis for engineering practice. |
doi_str_mv | 10.1109/ACCESS.2019.2940371 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2940371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8832191</ieee_id><doaj_id>oai_doaj_org_article_6a9c2a1715d540579b334f92a1ecfc56</doaj_id><sourcerecordid>2455607087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOgX9FKJc8qun_GxhFcRiANwtlzHQalCXGwHib_HJQixF--MZsYrTVHMEZaIoC5WdX39_LwkgGpJFAMq8aA4IShUSTkVh__242IW4xbyVJni8qS4fxz71JXmzQ1pcWMyKJPvXTAZ1n5IwfeLSxNds_DD4qqLKXSbMWW4aswudZ9ur4puiGM8K45a00c3-31Pi9eb65f6rnx4ul3Xq4fSMqhSyYjZNECJbaCqoEXFjBAoGecIQCrukEgDxDrOlLQEiRBNyxpwFJAQ2dLTYj3lNt5s9S507yZ8aW86_UP48KZNSJ3tnRZGWWJQIm84Ay7VhlLWqkw521ouctb5lLUL_mN0MemtH8OQz9ckXyRAQiWzik4qG3yMwbV_vyLofQd66kDvO9C_HWTXfHJ1zrk_R1VRggrpN3nSgB8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455607087</pqid></control><display><type>article</type><title>Multi-agent Fault-tolerant Control Based on Distributed Adaptive Consensus</title><source>IEEE Xplore Open Access Journals</source><creator>Zhang, Pu ; Xue, Huifeng ; Gao, Shan</creator><creatorcontrib>Zhang, Pu ; Xue, Huifeng ; Gao, Shan</creatorcontrib><description>This paper proposes a distributed adaptive control approach based on consensus theory so that a multi-agent formation can still complete the task despite the local fault of the leader for the multiagent formation system. The controlled object consists of four agents that form a triangle formation system, where one agent acts as the vertex of the triangle, and the remaining agents act as followers in a line. In addition, the speed of the leader is the forward direction of the formation, and the followers are behind the leader. Based on graph theory, the distributed adaptive updating of the agents' local information parameters are conducted, and the distributed adaptive control law is used to supplement the influence of the leader's fault in the multi-agent formation. According to the local information of adjacent agents, an overall distributed adaptive fault-tolerant control law is designed, and the stability of the designed controller is proved by constructing the Lyapunov function. Meanwhile, the relative distance error between the horizontal direction and longitudinal direction of the leader-follower converge to zero. The simulation results show that the proposed adaptive control approach has good robustness, which provides a theoretical basis for engineering practice.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2940371</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Control stability ; Control systems design ; Control theory ; Distributed adaptive control ; Fault tolerance ; Fault tolerant systems ; Fault-tolerant consensus ; Graph theory ; Horizontal orientation ; Leader-follower ; Liapunov functions ; Lyapunov function ; Multi-agent ; Multiagent systems ; Reagents ; Robust control ; Stability analysis ; Unmanned aerial vehicles</subject><ispartof>IEEE access, 2019-01, Vol.7, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3</citedby><cites>FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3</cites><orcidid>0000-0003-0005-1556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8832191$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhang, Pu</creatorcontrib><creatorcontrib>Xue, Huifeng</creatorcontrib><creatorcontrib>Gao, Shan</creatorcontrib><title>Multi-agent Fault-tolerant Control Based on Distributed Adaptive Consensus</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes a distributed adaptive control approach based on consensus theory so that a multi-agent formation can still complete the task despite the local fault of the leader for the multiagent formation system. The controlled object consists of four agents that form a triangle formation system, where one agent acts as the vertex of the triangle, and the remaining agents act as followers in a line. In addition, the speed of the leader is the forward direction of the formation, and the followers are behind the leader. Based on graph theory, the distributed adaptive updating of the agents' local information parameters are conducted, and the distributed adaptive control law is used to supplement the influence of the leader's fault in the multi-agent formation. According to the local information of adjacent agents, an overall distributed adaptive fault-tolerant control law is designed, and the stability of the designed controller is proved by constructing the Lyapunov function. Meanwhile, the relative distance error between the horizontal direction and longitudinal direction of the leader-follower converge to zero. The simulation results show that the proposed adaptive control approach has good robustness, which provides a theoretical basis for engineering practice.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Control stability</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Distributed adaptive control</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Fault-tolerant consensus</subject><subject>Graph theory</subject><subject>Horizontal orientation</subject><subject>Leader-follower</subject><subject>Liapunov functions</subject><subject>Lyapunov function</subject><subject>Multi-agent</subject><subject>Multiagent systems</subject><subject>Reagents</subject><subject>Robust control</subject><subject>Stability analysis</subject><subject>Unmanned aerial vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOgX9FKJc8qun_GxhFcRiANwtlzHQalCXGwHib_HJQixF--MZsYrTVHMEZaIoC5WdX39_LwkgGpJFAMq8aA4IShUSTkVh__242IW4xbyVJni8qS4fxz71JXmzQ1pcWMyKJPvXTAZ1n5IwfeLSxNds_DD4qqLKXSbMWW4aswudZ9ur4puiGM8K45a00c3-31Pi9eb65f6rnx4ul3Xq4fSMqhSyYjZNECJbaCqoEXFjBAoGecIQCrukEgDxDrOlLQEiRBNyxpwFJAQ2dLTYj3lNt5s9S507yZ8aW86_UP48KZNSJ3tnRZGWWJQIm84Ay7VhlLWqkw521ouctb5lLUL_mN0MemtH8OQz9ckXyRAQiWzik4qG3yMwbV_vyLofQd66kDvO9C_HWTXfHJ1zrk_R1VRggrpN3nSgB8</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Zhang, Pu</creator><creator>Xue, Huifeng</creator><creator>Gao, Shan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0005-1556</orcidid></search><sort><creationdate>20190101</creationdate><title>Multi-agent Fault-tolerant Control Based on Distributed Adaptive Consensus</title><author>Zhang, Pu ; Xue, Huifeng ; Gao, Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Control stability</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Distributed adaptive control</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Fault-tolerant consensus</topic><topic>Graph theory</topic><topic>Horizontal orientation</topic><topic>Leader-follower</topic><topic>Liapunov functions</topic><topic>Lyapunov function</topic><topic>Multi-agent</topic><topic>Multiagent systems</topic><topic>Reagents</topic><topic>Robust control</topic><topic>Stability analysis</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Pu</creatorcontrib><creatorcontrib>Xue, Huifeng</creatorcontrib><creatorcontrib>Gao, Shan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Pu</au><au>Xue, Huifeng</au><au>Gao, Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-agent Fault-tolerant Control Based on Distributed Adaptive Consensus</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>7</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes a distributed adaptive control approach based on consensus theory so that a multi-agent formation can still complete the task despite the local fault of the leader for the multiagent formation system. The controlled object consists of four agents that form a triangle formation system, where one agent acts as the vertex of the triangle, and the remaining agents act as followers in a line. In addition, the speed of the leader is the forward direction of the formation, and the followers are behind the leader. Based on graph theory, the distributed adaptive updating of the agents' local information parameters are conducted, and the distributed adaptive control law is used to supplement the influence of the leader's fault in the multi-agent formation. According to the local information of adjacent agents, an overall distributed adaptive fault-tolerant control law is designed, and the stability of the designed controller is proved by constructing the Lyapunov function. Meanwhile, the relative distance error between the horizontal direction and longitudinal direction of the leader-follower converge to zero. The simulation results show that the proposed adaptive control approach has good robustness, which provides a theoretical basis for engineering practice.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2940371</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0005-1556</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019-01, Vol.7, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2940371 |
source | IEEE Xplore Open Access Journals |
subjects | Adaptation models Adaptive control Control stability Control systems design Control theory Distributed adaptive control Fault tolerance Fault tolerant systems Fault-tolerant consensus Graph theory Horizontal orientation Leader-follower Liapunov functions Lyapunov function Multi-agent Multiagent systems Reagents Robust control Stability analysis Unmanned aerial vehicles |
title | Multi-agent Fault-tolerant Control Based on Distributed Adaptive Consensus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-agent%20Fault-tolerant%20Control%20Based%20on%20Distributed%20Adaptive%20Consensus&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Pu&rft.date=2019-01-01&rft.volume=7&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2940371&rft_dat=%3Cproquest_cross%3E2455607087%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455607087&rft_id=info:pmid/&rft_ieee_id=8832191&rfr_iscdi=true |