Loading…

Multi-agent Fault-tolerant Control Based on Distributed Adaptive Consensus

This paper proposes a distributed adaptive control approach based on consensus theory so that a multi-agent formation can still complete the task despite the local fault of the leader for the multiagent formation system. The controlled object consists of four agents that form a triangle formation sy...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019-01, Vol.7, p.1-1
Main Authors: Zhang, Pu, Xue, Huifeng, Gao, Shan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3
cites cdi_FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 7
creator Zhang, Pu
Xue, Huifeng
Gao, Shan
description This paper proposes a distributed adaptive control approach based on consensus theory so that a multi-agent formation can still complete the task despite the local fault of the leader for the multiagent formation system. The controlled object consists of four agents that form a triangle formation system, where one agent acts as the vertex of the triangle, and the remaining agents act as followers in a line. In addition, the speed of the leader is the forward direction of the formation, and the followers are behind the leader. Based on graph theory, the distributed adaptive updating of the agents' local information parameters are conducted, and the distributed adaptive control law is used to supplement the influence of the leader's fault in the multi-agent formation. According to the local information of adjacent agents, an overall distributed adaptive fault-tolerant control law is designed, and the stability of the designed controller is proved by constructing the Lyapunov function. Meanwhile, the relative distance error between the horizontal direction and longitudinal direction of the leader-follower converge to zero. The simulation results show that the proposed adaptive control approach has good robustness, which provides a theoretical basis for engineering practice.
doi_str_mv 10.1109/ACCESS.2019.2940371
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2940371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8832191</ieee_id><doaj_id>oai_doaj_org_article_6a9c2a1715d540579b334f92a1ecfc56</doaj_id><sourcerecordid>2455607087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOgX9FKJc8qun_GxhFcRiANwtlzHQalCXGwHib_HJQixF--MZsYrTVHMEZaIoC5WdX39_LwkgGpJFAMq8aA4IShUSTkVh__242IW4xbyVJni8qS4fxz71JXmzQ1pcWMyKJPvXTAZ1n5IwfeLSxNds_DD4qqLKXSbMWW4aswudZ9ur4puiGM8K45a00c3-31Pi9eb65f6rnx4ul3Xq4fSMqhSyYjZNECJbaCqoEXFjBAoGecIQCrukEgDxDrOlLQEiRBNyxpwFJAQ2dLTYj3lNt5s9S507yZ8aW86_UP48KZNSJ3tnRZGWWJQIm84Ay7VhlLWqkw521ouctb5lLUL_mN0MemtH8OQz9ckXyRAQiWzik4qG3yMwbV_vyLofQd66kDvO9C_HWTXfHJ1zrk_R1VRggrpN3nSgB8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455607087</pqid></control><display><type>article</type><title>Multi-agent Fault-tolerant Control Based on Distributed Adaptive Consensus</title><source>IEEE Xplore Open Access Journals</source><creator>Zhang, Pu ; Xue, Huifeng ; Gao, Shan</creator><creatorcontrib>Zhang, Pu ; Xue, Huifeng ; Gao, Shan</creatorcontrib><description>This paper proposes a distributed adaptive control approach based on consensus theory so that a multi-agent formation can still complete the task despite the local fault of the leader for the multiagent formation system. The controlled object consists of four agents that form a triangle formation system, where one agent acts as the vertex of the triangle, and the remaining agents act as followers in a line. In addition, the speed of the leader is the forward direction of the formation, and the followers are behind the leader. Based on graph theory, the distributed adaptive updating of the agents' local information parameters are conducted, and the distributed adaptive control law is used to supplement the influence of the leader's fault in the multi-agent formation. According to the local information of adjacent agents, an overall distributed adaptive fault-tolerant control law is designed, and the stability of the designed controller is proved by constructing the Lyapunov function. Meanwhile, the relative distance error between the horizontal direction and longitudinal direction of the leader-follower converge to zero. The simulation results show that the proposed adaptive control approach has good robustness, which provides a theoretical basis for engineering practice.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2940371</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Control stability ; Control systems design ; Control theory ; Distributed adaptive control ; Fault tolerance ; Fault tolerant systems ; Fault-tolerant consensus ; Graph theory ; Horizontal orientation ; Leader-follower ; Liapunov functions ; Lyapunov function ; Multi-agent ; Multiagent systems ; Reagents ; Robust control ; Stability analysis ; Unmanned aerial vehicles</subject><ispartof>IEEE access, 2019-01, Vol.7, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3</citedby><cites>FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3</cites><orcidid>0000-0003-0005-1556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8832191$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhang, Pu</creatorcontrib><creatorcontrib>Xue, Huifeng</creatorcontrib><creatorcontrib>Gao, Shan</creatorcontrib><title>Multi-agent Fault-tolerant Control Based on Distributed Adaptive Consensus</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes a distributed adaptive control approach based on consensus theory so that a multi-agent formation can still complete the task despite the local fault of the leader for the multiagent formation system. The controlled object consists of four agents that form a triangle formation system, where one agent acts as the vertex of the triangle, and the remaining agents act as followers in a line. In addition, the speed of the leader is the forward direction of the formation, and the followers are behind the leader. Based on graph theory, the distributed adaptive updating of the agents' local information parameters are conducted, and the distributed adaptive control law is used to supplement the influence of the leader's fault in the multi-agent formation. According to the local information of adjacent agents, an overall distributed adaptive fault-tolerant control law is designed, and the stability of the designed controller is proved by constructing the Lyapunov function. Meanwhile, the relative distance error between the horizontal direction and longitudinal direction of the leader-follower converge to zero. The simulation results show that the proposed adaptive control approach has good robustness, which provides a theoretical basis for engineering practice.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Control stability</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Distributed adaptive control</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Fault-tolerant consensus</subject><subject>Graph theory</subject><subject>Horizontal orientation</subject><subject>Leader-follower</subject><subject>Liapunov functions</subject><subject>Lyapunov function</subject><subject>Multi-agent</subject><subject>Multiagent systems</subject><subject>Reagents</subject><subject>Robust control</subject><subject>Stability analysis</subject><subject>Unmanned aerial vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOgX9FKJc8qun_GxhFcRiANwtlzHQalCXGwHib_HJQixF--MZsYrTVHMEZaIoC5WdX39_LwkgGpJFAMq8aA4IShUSTkVh__242IW4xbyVJni8qS4fxz71JXmzQ1pcWMyKJPvXTAZ1n5IwfeLSxNds_DD4qqLKXSbMWW4aswudZ9ur4puiGM8K45a00c3-31Pi9eb65f6rnx4ul3Xq4fSMqhSyYjZNECJbaCqoEXFjBAoGecIQCrukEgDxDrOlLQEiRBNyxpwFJAQ2dLTYj3lNt5s9S507yZ8aW86_UP48KZNSJ3tnRZGWWJQIm84Ay7VhlLWqkw521ouctb5lLUL_mN0MemtH8OQz9ckXyRAQiWzik4qG3yMwbV_vyLofQd66kDvO9C_HWTXfHJ1zrk_R1VRggrpN3nSgB8</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Zhang, Pu</creator><creator>Xue, Huifeng</creator><creator>Gao, Shan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0005-1556</orcidid></search><sort><creationdate>20190101</creationdate><title>Multi-agent Fault-tolerant Control Based on Distributed Adaptive Consensus</title><author>Zhang, Pu ; Xue, Huifeng ; Gao, Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Control stability</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Distributed adaptive control</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Fault-tolerant consensus</topic><topic>Graph theory</topic><topic>Horizontal orientation</topic><topic>Leader-follower</topic><topic>Liapunov functions</topic><topic>Lyapunov function</topic><topic>Multi-agent</topic><topic>Multiagent systems</topic><topic>Reagents</topic><topic>Robust control</topic><topic>Stability analysis</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Pu</creatorcontrib><creatorcontrib>Xue, Huifeng</creatorcontrib><creatorcontrib>Gao, Shan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Pu</au><au>Xue, Huifeng</au><au>Gao, Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-agent Fault-tolerant Control Based on Distributed Adaptive Consensus</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>7</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes a distributed adaptive control approach based on consensus theory so that a multi-agent formation can still complete the task despite the local fault of the leader for the multiagent formation system. The controlled object consists of four agents that form a triangle formation system, where one agent acts as the vertex of the triangle, and the remaining agents act as followers in a line. In addition, the speed of the leader is the forward direction of the formation, and the followers are behind the leader. Based on graph theory, the distributed adaptive updating of the agents' local information parameters are conducted, and the distributed adaptive control law is used to supplement the influence of the leader's fault in the multi-agent formation. According to the local information of adjacent agents, an overall distributed adaptive fault-tolerant control law is designed, and the stability of the designed controller is proved by constructing the Lyapunov function. Meanwhile, the relative distance error between the horizontal direction and longitudinal direction of the leader-follower converge to zero. The simulation results show that the proposed adaptive control approach has good robustness, which provides a theoretical basis for engineering practice.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2940371</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0005-1556</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019-01, Vol.7, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2940371
source IEEE Xplore Open Access Journals
subjects Adaptation models
Adaptive control
Control stability
Control systems design
Control theory
Distributed adaptive control
Fault tolerance
Fault tolerant systems
Fault-tolerant consensus
Graph theory
Horizontal orientation
Leader-follower
Liapunov functions
Lyapunov function
Multi-agent
Multiagent systems
Reagents
Robust control
Stability analysis
Unmanned aerial vehicles
title Multi-agent Fault-tolerant Control Based on Distributed Adaptive Consensus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-agent%20Fault-tolerant%20Control%20Based%20on%20Distributed%20Adaptive%20Consensus&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Pu&rft.date=2019-01-01&rft.volume=7&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2940371&rft_dat=%3Cproquest_cross%3E2455607087%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-42abd032cd0880f194a6617455100285e127a02ce5497c21266df4d0e301227f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455607087&rft_id=info:pmid/&rft_ieee_id=8832191&rfr_iscdi=true