Loading…

A Wearable sEMG Pattern-Recognition Integrated Interface Embedding Analog Pseudo-Wavelet Preprocessing

This paper presents a wearable wireless surface electromyogram (sEMG) integrated interface that utilizes a proposed analog pseudo-wavelet preprocessor (APWP) for signal acquisition and pattern recognition. The APWP is integrated into a readout integrated circuit (ROIC), which is fabricated in a 0.18...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.151320-151328
Main Authors: Chae, Hee Young, Lee, Kwangmuk, Jang, Jonggyu, Park, Kyeonghwan, Kim, Jae Joon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a wearable wireless surface electromyogram (sEMG) integrated interface that utilizes a proposed analog pseudo-wavelet preprocessor (APWP) for signal acquisition and pattern recognition. The APWP is integrated into a readout integrated circuit (ROIC), which is fabricated in a 0.18-μm complementary metal-oxide-semiconductor (CMOS) process. Based on this ROIC, a wearable device module and its wireless system prototype are implemented to recognize five kinds of real-time handgesture motions, where the power consumption is further reduced by adopting low-power components. Real-time measurements of sEMG signals and APWP data through this wearable interface are wirelessly transferred to a laptop or a sensor hub, and then they are further processed to implement the pseudo-wavelet transform under the MATLAB environment. The resulting APWP-augmented pattern-recognition algorithm was experimentally verified to improve the accuracy by 7 % with a real-time frequency analysis.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2948090