Loading…
Analysis of Road-User Interaction by Extraction of Driver Behavior Features Using Deep Learning
In this study, an improved deep learning model is proposed to explore the complex interactions between the road environment and driver's behaviour throughout the generation of a graphical representation. The proposed model consists of an unsupervised Denoising Stacked Autoencoder (SDAE) able to...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.19638-19645 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, an improved deep learning model is proposed to explore the complex interactions between the road environment and driver's behaviour throughout the generation of a graphical representation. The proposed model consists of an unsupervised Denoising Stacked Autoencoder (SDAE) able to provide output layers in RGB colors. The dataset comes from an experimental driving test where kinematic measures were tracked with an in-vehicle GPS device. The graphical outcomes reveal the method ability to efficiently detect patterns of simple driving behaviors, as well as the road environment complexity and some events encountered along the path. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2965940 |