Loading…
A Sentiment Analysis Method of Capsule Network Based on BiLSTM
Nowadays, capsule network model is widely used in image processing, whose feature engineering is not suitable for sentiment analysis based on texts obviously. In this paper, we propose a capsule network model with BiLSTM named caps-BiLSTM for sentiment analysis to solve the problem, and introduce th...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.37014-37020 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13 |
container_end_page | 37020 |
container_issue | |
container_start_page | 37014 |
container_title | IEEE access |
container_volume | 8 |
creator | Dong, Yongfeng Fu, Yu Wang, Liqin Chen, Yunliang Dong, Yao Li, Jianxin |
description | Nowadays, capsule network model is widely used in image processing, whose feature engineering is not suitable for sentiment analysis based on texts obviously. In this paper, we propose a capsule network model with BiLSTM named caps-BiLSTM for sentiment analysis to solve the problem, and introduce the experimental results on different datasets. At the beginning of caps-BiLSTM, a convolution layer is used to transform the instance to hide vector. Then the capsule module constructs the capsule representation to the n-gram model. The state probability of a certain capsule is calculated by the capsule model. If the state probability of a given instance is the largest among all capsules, a higher coupling coefficient is assigned. Finally, in order to fusion the data features, the output of the capsule enters into a BiLSTM structure, which is used as a decoder to get the probability representation. Experimental results based on MR, IMDB and SST datasets show that the proposed method can achieve better performances than the traditional machine learning methods and the compared deeping learning models. |
doi_str_mv | 10.1109/ACCESS.2020.2973711 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2973711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9007445</ieee_id><doaj_id>oai_doaj_org_article_901c6798c4f0498d8274154ca35b3f42</doaj_id><sourcerecordid>2454747623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13</originalsourceid><addsrcrecordid>eNpNUE1PAjEQ3RhNJMgv4LKJZ7Afs-32YgIbVBLQw-K56XZbXQSK7RLDv7e4hDiHmcmbeW8yL0mGGI0xRuJhUhSzshwTRNCYCE45xldJj2AmRjSj7Ppff5sMQlijGHmEMt5LHidpaXZts40pnezU5hiakC5N--nq1Nm0UPtw2Jj01bQ_zn-lUxVMHOzSabMoV8u75MaqTTCDc-0n70-zVfEyWrw9z4vJYqQB5e3ICiAVRprmOTPAGAWcE6sqYFQIhDhXwDJmVRxwYYnNtLZGVTVmgLSxmPaTeadbO7WWe99slT9Kpxr5Bzj_IZVvG70xUiCsGRe5BotA5HVOOOAMtKJZRS2QqHXfae29-z6Y0Mq1O_j4epAEMuDAGaFxi3Zb2rsQvLGXqxjJk--y812efJdn3yNr2LEaY8yFcXoRIKO_Mpx6yQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454747623</pqid></control><display><type>article</type><title>A Sentiment Analysis Method of Capsule Network Based on BiLSTM</title><source>IEEE Open Access Journals</source><creator>Dong, Yongfeng ; Fu, Yu ; Wang, Liqin ; Chen, Yunliang ; Dong, Yao ; Li, Jianxin</creator><creatorcontrib>Dong, Yongfeng ; Fu, Yu ; Wang, Liqin ; Chen, Yunliang ; Dong, Yao ; Li, Jianxin</creatorcontrib><description>Nowadays, capsule network model is widely used in image processing, whose feature engineering is not suitable for sentiment analysis based on texts obviously. In this paper, we propose a capsule network model with BiLSTM named caps-BiLSTM for sentiment analysis to solve the problem, and introduce the experimental results on different datasets. At the beginning of caps-BiLSTM, a convolution layer is used to transform the instance to hide vector. Then the capsule module constructs the capsule representation to the n-gram model. The state probability of a certain capsule is calculated by the capsule model. If the state probability of a given instance is the largest among all capsules, a higher coupling coefficient is assigned. Finally, in order to fusion the data features, the output of the capsule enters into a BiLSTM structure, which is used as a decoder to get the probability representation. Experimental results based on MR, IMDB and SST datasets show that the proposed method can achieve better performances than the traditional machine learning methods and the compared deeping learning models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2973711</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>BiLSTM ; capsule network ; Convolution ; Coupling coefficients ; Couplings ; Data mining ; Datasets ; Feature extraction ; Heuristic algorithms ; Image processing ; Machine learning ; neural network ; Neural networks ; Representations ; Routing ; Sentiment analysis ; Task analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.37014-37020</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13</citedby><cites>FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13</cites><orcidid>0000-0003-2335-535X ; 0000-0002-9059-330X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9007445$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Dong, Yongfeng</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Wang, Liqin</creatorcontrib><creatorcontrib>Chen, Yunliang</creatorcontrib><creatorcontrib>Dong, Yao</creatorcontrib><creatorcontrib>Li, Jianxin</creatorcontrib><title>A Sentiment Analysis Method of Capsule Network Based on BiLSTM</title><title>IEEE access</title><addtitle>Access</addtitle><description>Nowadays, capsule network model is widely used in image processing, whose feature engineering is not suitable for sentiment analysis based on texts obviously. In this paper, we propose a capsule network model with BiLSTM named caps-BiLSTM for sentiment analysis to solve the problem, and introduce the experimental results on different datasets. At the beginning of caps-BiLSTM, a convolution layer is used to transform the instance to hide vector. Then the capsule module constructs the capsule representation to the n-gram model. The state probability of a certain capsule is calculated by the capsule model. If the state probability of a given instance is the largest among all capsules, a higher coupling coefficient is assigned. Finally, in order to fusion the data features, the output of the capsule enters into a BiLSTM structure, which is used as a decoder to get the probability representation. Experimental results based on MR, IMDB and SST datasets show that the proposed method can achieve better performances than the traditional machine learning methods and the compared deeping learning models.</description><subject>BiLSTM</subject><subject>capsule network</subject><subject>Convolution</subject><subject>Coupling coefficients</subject><subject>Couplings</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Heuristic algorithms</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Representations</subject><subject>Routing</subject><subject>Sentiment analysis</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PAjEQ3RhNJMgv4LKJZ7Afs-32YgIbVBLQw-K56XZbXQSK7RLDv7e4hDiHmcmbeW8yL0mGGI0xRuJhUhSzshwTRNCYCE45xldJj2AmRjSj7Ppff5sMQlijGHmEMt5LHidpaXZts40pnezU5hiakC5N--nq1Nm0UPtw2Jj01bQ_zn-lUxVMHOzSabMoV8u75MaqTTCDc-0n70-zVfEyWrw9z4vJYqQB5e3ICiAVRprmOTPAGAWcE6sqYFQIhDhXwDJmVRxwYYnNtLZGVTVmgLSxmPaTeadbO7WWe99slT9Kpxr5Bzj_IZVvG70xUiCsGRe5BotA5HVOOOAMtKJZRS2QqHXfae29-z6Y0Mq1O_j4epAEMuDAGaFxi3Zb2rsQvLGXqxjJk--y812efJdn3yNr2LEaY8yFcXoRIKO_Mpx6yQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Dong, Yongfeng</creator><creator>Fu, Yu</creator><creator>Wang, Liqin</creator><creator>Chen, Yunliang</creator><creator>Dong, Yao</creator><creator>Li, Jianxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2335-535X</orcidid><orcidid>https://orcid.org/0000-0002-9059-330X</orcidid></search><sort><creationdate>2020</creationdate><title>A Sentiment Analysis Method of Capsule Network Based on BiLSTM</title><author>Dong, Yongfeng ; Fu, Yu ; Wang, Liqin ; Chen, Yunliang ; Dong, Yao ; Li, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BiLSTM</topic><topic>capsule network</topic><topic>Convolution</topic><topic>Coupling coefficients</topic><topic>Couplings</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Heuristic algorithms</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Representations</topic><topic>Routing</topic><topic>Sentiment analysis</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yongfeng</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Wang, Liqin</creatorcontrib><creatorcontrib>Chen, Yunliang</creatorcontrib><creatorcontrib>Dong, Yao</creatorcontrib><creatorcontrib>Li, Jianxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>TestCollectionTL3OpenAccess</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yongfeng</au><au>Fu, Yu</au><au>Wang, Liqin</au><au>Chen, Yunliang</au><au>Dong, Yao</au><au>Li, Jianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sentiment Analysis Method of Capsule Network Based on BiLSTM</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>37014</spage><epage>37020</epage><pages>37014-37020</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Nowadays, capsule network model is widely used in image processing, whose feature engineering is not suitable for sentiment analysis based on texts obviously. In this paper, we propose a capsule network model with BiLSTM named caps-BiLSTM for sentiment analysis to solve the problem, and introduce the experimental results on different datasets. At the beginning of caps-BiLSTM, a convolution layer is used to transform the instance to hide vector. Then the capsule module constructs the capsule representation to the n-gram model. The state probability of a certain capsule is calculated by the capsule model. If the state probability of a given instance is the largest among all capsules, a higher coupling coefficient is assigned. Finally, in order to fusion the data features, the output of the capsule enters into a BiLSTM structure, which is used as a decoder to get the probability representation. Experimental results based on MR, IMDB and SST datasets show that the proposed method can achieve better performances than the traditional machine learning methods and the compared deeping learning models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2973711</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2335-535X</orcidid><orcidid>https://orcid.org/0000-0002-9059-330X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.37014-37020 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_2973711 |
source | IEEE Open Access Journals |
subjects | BiLSTM capsule network Convolution Coupling coefficients Couplings Data mining Datasets Feature extraction Heuristic algorithms Image processing Machine learning neural network Neural networks Representations Routing Sentiment analysis Task analysis |
title | A Sentiment Analysis Method of Capsule Network Based on BiLSTM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sentiment%20Analysis%20Method%20of%20Capsule%20Network%20Based%20on%20BiLSTM&rft.jtitle=IEEE%20access&rft.au=Dong,%20Yongfeng&rft.date=2020&rft.volume=8&rft.spage=37014&rft.epage=37020&rft.pages=37014-37020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2973711&rft_dat=%3Cproquest_cross%3E2454747623%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454747623&rft_id=info:pmid/&rft_ieee_id=9007445&rfr_iscdi=true |