Loading…

A Sentiment Analysis Method of Capsule Network Based on BiLSTM

Nowadays, capsule network model is widely used in image processing, whose feature engineering is not suitable for sentiment analysis based on texts obviously. In this paper, we propose a capsule network model with BiLSTM named caps-BiLSTM for sentiment analysis to solve the problem, and introduce th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.37014-37020
Main Authors: Dong, Yongfeng, Fu, Yu, Wang, Liqin, Chen, Yunliang, Dong, Yao, Li, Jianxin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13
cites cdi_FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13
container_end_page 37020
container_issue
container_start_page 37014
container_title IEEE access
container_volume 8
creator Dong, Yongfeng
Fu, Yu
Wang, Liqin
Chen, Yunliang
Dong, Yao
Li, Jianxin
description Nowadays, capsule network model is widely used in image processing, whose feature engineering is not suitable for sentiment analysis based on texts obviously. In this paper, we propose a capsule network model with BiLSTM named caps-BiLSTM for sentiment analysis to solve the problem, and introduce the experimental results on different datasets. At the beginning of caps-BiLSTM, a convolution layer is used to transform the instance to hide vector. Then the capsule module constructs the capsule representation to the n-gram model. The state probability of a certain capsule is calculated by the capsule model. If the state probability of a given instance is the largest among all capsules, a higher coupling coefficient is assigned. Finally, in order to fusion the data features, the output of the capsule enters into a BiLSTM structure, which is used as a decoder to get the probability representation. Experimental results based on MR, IMDB and SST datasets show that the proposed method can achieve better performances than the traditional machine learning methods and the compared deeping learning models.
doi_str_mv 10.1109/ACCESS.2020.2973711
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2973711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9007445</ieee_id><doaj_id>oai_doaj_org_article_901c6798c4f0498d8274154ca35b3f42</doaj_id><sourcerecordid>2454747623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13</originalsourceid><addsrcrecordid>eNpNUE1PAjEQ3RhNJMgv4LKJZ7Afs-32YgIbVBLQw-K56XZbXQSK7RLDv7e4hDiHmcmbeW8yL0mGGI0xRuJhUhSzshwTRNCYCE45xldJj2AmRjSj7Ppff5sMQlijGHmEMt5LHidpaXZts40pnezU5hiakC5N--nq1Nm0UPtw2Jj01bQ_zn-lUxVMHOzSabMoV8u75MaqTTCDc-0n70-zVfEyWrw9z4vJYqQB5e3ICiAVRprmOTPAGAWcE6sqYFQIhDhXwDJmVRxwYYnNtLZGVTVmgLSxmPaTeadbO7WWe99slT9Kpxr5Bzj_IZVvG70xUiCsGRe5BotA5HVOOOAMtKJZRS2QqHXfae29-z6Y0Mq1O_j4epAEMuDAGaFxi3Zb2rsQvLGXqxjJk--y812efJdn3yNr2LEaY8yFcXoRIKO_Mpx6yQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454747623</pqid></control><display><type>article</type><title>A Sentiment Analysis Method of Capsule Network Based on BiLSTM</title><source>IEEE Open Access Journals</source><creator>Dong, Yongfeng ; Fu, Yu ; Wang, Liqin ; Chen, Yunliang ; Dong, Yao ; Li, Jianxin</creator><creatorcontrib>Dong, Yongfeng ; Fu, Yu ; Wang, Liqin ; Chen, Yunliang ; Dong, Yao ; Li, Jianxin</creatorcontrib><description>Nowadays, capsule network model is widely used in image processing, whose feature engineering is not suitable for sentiment analysis based on texts obviously. In this paper, we propose a capsule network model with BiLSTM named caps-BiLSTM for sentiment analysis to solve the problem, and introduce the experimental results on different datasets. At the beginning of caps-BiLSTM, a convolution layer is used to transform the instance to hide vector. Then the capsule module constructs the capsule representation to the n-gram model. The state probability of a certain capsule is calculated by the capsule model. If the state probability of a given instance is the largest among all capsules, a higher coupling coefficient is assigned. Finally, in order to fusion the data features, the output of the capsule enters into a BiLSTM structure, which is used as a decoder to get the probability representation. Experimental results based on MR, IMDB and SST datasets show that the proposed method can achieve better performances than the traditional machine learning methods and the compared deeping learning models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2973711</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>BiLSTM ; capsule network ; Convolution ; Coupling coefficients ; Couplings ; Data mining ; Datasets ; Feature extraction ; Heuristic algorithms ; Image processing ; Machine learning ; neural network ; Neural networks ; Representations ; Routing ; Sentiment analysis ; Task analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.37014-37020</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13</citedby><cites>FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13</cites><orcidid>0000-0003-2335-535X ; 0000-0002-9059-330X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9007445$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Dong, Yongfeng</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Wang, Liqin</creatorcontrib><creatorcontrib>Chen, Yunliang</creatorcontrib><creatorcontrib>Dong, Yao</creatorcontrib><creatorcontrib>Li, Jianxin</creatorcontrib><title>A Sentiment Analysis Method of Capsule Network Based on BiLSTM</title><title>IEEE access</title><addtitle>Access</addtitle><description>Nowadays, capsule network model is widely used in image processing, whose feature engineering is not suitable for sentiment analysis based on texts obviously. In this paper, we propose a capsule network model with BiLSTM named caps-BiLSTM for sentiment analysis to solve the problem, and introduce the experimental results on different datasets. At the beginning of caps-BiLSTM, a convolution layer is used to transform the instance to hide vector. Then the capsule module constructs the capsule representation to the n-gram model. The state probability of a certain capsule is calculated by the capsule model. If the state probability of a given instance is the largest among all capsules, a higher coupling coefficient is assigned. Finally, in order to fusion the data features, the output of the capsule enters into a BiLSTM structure, which is used as a decoder to get the probability representation. Experimental results based on MR, IMDB and SST datasets show that the proposed method can achieve better performances than the traditional machine learning methods and the compared deeping learning models.</description><subject>BiLSTM</subject><subject>capsule network</subject><subject>Convolution</subject><subject>Coupling coefficients</subject><subject>Couplings</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Heuristic algorithms</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Representations</subject><subject>Routing</subject><subject>Sentiment analysis</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PAjEQ3RhNJMgv4LKJZ7Afs-32YgIbVBLQw-K56XZbXQSK7RLDv7e4hDiHmcmbeW8yL0mGGI0xRuJhUhSzshwTRNCYCE45xldJj2AmRjSj7Ppff5sMQlijGHmEMt5LHidpaXZts40pnezU5hiakC5N--nq1Nm0UPtw2Jj01bQ_zn-lUxVMHOzSabMoV8u75MaqTTCDc-0n70-zVfEyWrw9z4vJYqQB5e3ICiAVRprmOTPAGAWcE6sqYFQIhDhXwDJmVRxwYYnNtLZGVTVmgLSxmPaTeadbO7WWe99slT9Kpxr5Bzj_IZVvG70xUiCsGRe5BotA5HVOOOAMtKJZRS2QqHXfae29-z6Y0Mq1O_j4epAEMuDAGaFxi3Zb2rsQvLGXqxjJk--y812efJdn3yNr2LEaY8yFcXoRIKO_Mpx6yQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Dong, Yongfeng</creator><creator>Fu, Yu</creator><creator>Wang, Liqin</creator><creator>Chen, Yunliang</creator><creator>Dong, Yao</creator><creator>Li, Jianxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2335-535X</orcidid><orcidid>https://orcid.org/0000-0002-9059-330X</orcidid></search><sort><creationdate>2020</creationdate><title>A Sentiment Analysis Method of Capsule Network Based on BiLSTM</title><author>Dong, Yongfeng ; Fu, Yu ; Wang, Liqin ; Chen, Yunliang ; Dong, Yao ; Li, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BiLSTM</topic><topic>capsule network</topic><topic>Convolution</topic><topic>Coupling coefficients</topic><topic>Couplings</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Heuristic algorithms</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Representations</topic><topic>Routing</topic><topic>Sentiment analysis</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yongfeng</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Wang, Liqin</creatorcontrib><creatorcontrib>Chen, Yunliang</creatorcontrib><creatorcontrib>Dong, Yao</creatorcontrib><creatorcontrib>Li, Jianxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>TestCollectionTL3OpenAccess</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yongfeng</au><au>Fu, Yu</au><au>Wang, Liqin</au><au>Chen, Yunliang</au><au>Dong, Yao</au><au>Li, Jianxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sentiment Analysis Method of Capsule Network Based on BiLSTM</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>37014</spage><epage>37020</epage><pages>37014-37020</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Nowadays, capsule network model is widely used in image processing, whose feature engineering is not suitable for sentiment analysis based on texts obviously. In this paper, we propose a capsule network model with BiLSTM named caps-BiLSTM for sentiment analysis to solve the problem, and introduce the experimental results on different datasets. At the beginning of caps-BiLSTM, a convolution layer is used to transform the instance to hide vector. Then the capsule module constructs the capsule representation to the n-gram model. The state probability of a certain capsule is calculated by the capsule model. If the state probability of a given instance is the largest among all capsules, a higher coupling coefficient is assigned. Finally, in order to fusion the data features, the output of the capsule enters into a BiLSTM structure, which is used as a decoder to get the probability representation. Experimental results based on MR, IMDB and SST datasets show that the proposed method can achieve better performances than the traditional machine learning methods and the compared deeping learning models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2973711</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2335-535X</orcidid><orcidid>https://orcid.org/0000-0002-9059-330X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.37014-37020
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2973711
source IEEE Open Access Journals
subjects BiLSTM
capsule network
Convolution
Coupling coefficients
Couplings
Data mining
Datasets
Feature extraction
Heuristic algorithms
Image processing
Machine learning
neural network
Neural networks
Representations
Routing
Sentiment analysis
Task analysis
title A Sentiment Analysis Method of Capsule Network Based on BiLSTM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sentiment%20Analysis%20Method%20of%20Capsule%20Network%20Based%20on%20BiLSTM&rft.jtitle=IEEE%20access&rft.au=Dong,%20Yongfeng&rft.date=2020&rft.volume=8&rft.spage=37014&rft.epage=37020&rft.pages=37014-37020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2973711&rft_dat=%3Cproquest_cross%3E2454747623%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-f942b10c3886e46634182fab463990077a4656fa63479f2f5ccfeabd1640cef13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454747623&rft_id=info:pmid/&rft_ieee_id=9007445&rfr_iscdi=true