Loading…

A Hybrid Evolutionary-Based MPPT for Photovoltaic Systems Under Partial Shading Conditions

Under partial shading conditions (PSCs), photovoltaic (PV) system characteristics vary and may have multiple power peaks. Conventional maximum power point tracking (MPPT) methods are unable to track the global peak. In addition, it takes a considerable time to reach the maximum power point (MPP). To...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.38481-38492
Main Authors: Joisher, Mansi, Singh, Dharampal, Taheri, Shamsodin, Espinoza-Trejo, Diego R., Pouresmaeil, Edris, Taheri, Hamed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-73566cc69f034ab69b1efbc5568bc405e5f0e152f87c58ddbd04b1a85226480b3
cites cdi_FETCH-LOGICAL-c408t-73566cc69f034ab69b1efbc5568bc405e5f0e152f87c58ddbd04b1a85226480b3
container_end_page 38492
container_issue
container_start_page 38481
container_title IEEE access
container_volume 8
creator Joisher, Mansi
Singh, Dharampal
Taheri, Shamsodin
Espinoza-Trejo, Diego R.
Pouresmaeil, Edris
Taheri, Hamed
description Under partial shading conditions (PSCs), photovoltaic (PV) system characteristics vary and may have multiple power peaks. Conventional maximum power point tracking (MPPT) methods are unable to track the global peak. In addition, it takes a considerable time to reach the maximum power point (MPP). To address these issues, this paper proposes an improved hybrid MPPT method using the conventional evolutional algorithms, i.e., Particle Swarm Optimization (PSO) and Differential Evaluation (DE). The main feature of the proposed hybrid MPPT method is the advantage of one method compensates for shortcomings of the other method. Furthermore, the algorithm is simple and rapid. It can be easily implemented on a low-cost microcontroller. To evaluate the performance of the proposed method, MATLAB simulations are carried out under different PSCc. Experimental verifications are conducted using a boost converter setup, an ET-M53695 panel and a TMS320F28335 DSP. Finally, the simulation and hardware results are compared to those from the PSO and DE methods. The superiority of the hybrid method over PSO and DE methods is highlighted through the results.
doi_str_mv 10.1109/ACCESS.2020.2975742
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2975742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9006783</ieee_id><doaj_id>oai_doaj_org_article_5332fab575cc484bad06fde78771313b</doaj_id><sourcerecordid>2454757481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-73566cc69f034ab69b1efbc5568bc405e5f0e152f87c58ddbd04b1a85226480b3</originalsourceid><addsrcrecordid>eNpNUU1LJDEUbGQXFPUXeAl47tl8J30cm3FHUHZg9LKXkE_NMHY06VmYf2_aFtl3yaNeVeUl1TRXCC4Qgt2vZd-vttsFhhgucCeYoPikOcOIdy1hhP_4rz9tLkvZwVqyQkycNX-XYH00OTqw-pf2hzGmQedje6OLd-Bhs3kEIWWweUljqvNRRwu2xzL61wKeBufrSOcx6j3YvmgXh2fQp8HFyaZcND-D3hd_-XWeN0-3q8d-3d7_-X3XL-9bS6EcW0EY59byLkBCteGdQT4YyxiXpjKYZwF6xHCQwjLpnHGQGqQlw5hTCQ05b-5mX5f0Tr3l-FpfoJKO6hNI-VlNO9q9V4wQHLRhgllLJTXaQR6cF1IIRBCZvK5nr7ec3g--jGqXDnmo6ytMGZ0-V6LKIjPL5lRK9uH7VgTVlImaM1FTJuork6q6mlXRe_-t6CDkQhLyAez4hy8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454757481</pqid></control><display><type>article</type><title>A Hybrid Evolutionary-Based MPPT for Photovoltaic Systems Under Partial Shading Conditions</title><source>IEEE Open Access Journals</source><creator>Joisher, Mansi ; Singh, Dharampal ; Taheri, Shamsodin ; Espinoza-Trejo, Diego R. ; Pouresmaeil, Edris ; Taheri, Hamed</creator><creatorcontrib>Joisher, Mansi ; Singh, Dharampal ; Taheri, Shamsodin ; Espinoza-Trejo, Diego R. ; Pouresmaeil, Edris ; Taheri, Hamed</creatorcontrib><description>Under partial shading conditions (PSCs), photovoltaic (PV) system characteristics vary and may have multiple power peaks. Conventional maximum power point tracking (MPPT) methods are unable to track the global peak. In addition, it takes a considerable time to reach the maximum power point (MPP). To address these issues, this paper proposes an improved hybrid MPPT method using the conventional evolutional algorithms, i.e., Particle Swarm Optimization (PSO) and Differential Evaluation (DE). The main feature of the proposed hybrid MPPT method is the advantage of one method compensates for shortcomings of the other method. Furthermore, the algorithm is simple and rapid. It can be easily implemented on a low-cost microcontroller. To evaluate the performance of the proposed method, MATLAB simulations are carried out under different PSCc. Experimental verifications are conducted using a boost converter setup, an ET-M53695 panel and a TMS320F28335 DSP. Finally, the simulation and hardware results are compared to those from the PSO and DE methods. The superiority of the hybrid method over PSO and DE methods is highlighted through the results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2975742</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Convergence ; Converters ; differential evaluation ; Maximum power point trackers ; maximum power point tracking ; Maximum power tracking ; Microcontrollers ; Optimization ; partial shading condition ; Particle swarm optimization ; Performance evaluation ; Photovoltaic cells ; Photovoltaic systems ; Shading ; Sociology ; Statistics</subject><ispartof>IEEE access, 2020, Vol.8, p.38481-38492</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-73566cc69f034ab69b1efbc5568bc405e5f0e152f87c58ddbd04b1a85226480b3</citedby><cites>FETCH-LOGICAL-c408t-73566cc69f034ab69b1efbc5568bc405e5f0e152f87c58ddbd04b1a85226480b3</cites><orcidid>0000-0002-2079-064X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9006783$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Joisher, Mansi</creatorcontrib><creatorcontrib>Singh, Dharampal</creatorcontrib><creatorcontrib>Taheri, Shamsodin</creatorcontrib><creatorcontrib>Espinoza-Trejo, Diego R.</creatorcontrib><creatorcontrib>Pouresmaeil, Edris</creatorcontrib><creatorcontrib>Taheri, Hamed</creatorcontrib><title>A Hybrid Evolutionary-Based MPPT for Photovoltaic Systems Under Partial Shading Conditions</title><title>IEEE access</title><addtitle>Access</addtitle><description>Under partial shading conditions (PSCs), photovoltaic (PV) system characteristics vary and may have multiple power peaks. Conventional maximum power point tracking (MPPT) methods are unable to track the global peak. In addition, it takes a considerable time to reach the maximum power point (MPP). To address these issues, this paper proposes an improved hybrid MPPT method using the conventional evolutional algorithms, i.e., Particle Swarm Optimization (PSO) and Differential Evaluation (DE). The main feature of the proposed hybrid MPPT method is the advantage of one method compensates for shortcomings of the other method. Furthermore, the algorithm is simple and rapid. It can be easily implemented on a low-cost microcontroller. To evaluate the performance of the proposed method, MATLAB simulations are carried out under different PSCc. Experimental verifications are conducted using a boost converter setup, an ET-M53695 panel and a TMS320F28335 DSP. Finally, the simulation and hardware results are compared to those from the PSO and DE methods. The superiority of the hybrid method over PSO and DE methods is highlighted through the results.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Converters</subject><subject>differential evaluation</subject><subject>Maximum power point trackers</subject><subject>maximum power point tracking</subject><subject>Maximum power tracking</subject><subject>Microcontrollers</subject><subject>Optimization</subject><subject>partial shading condition</subject><subject>Particle swarm optimization</subject><subject>Performance evaluation</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>Shading</subject><subject>Sociology</subject><subject>Statistics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LJDEUbGQXFPUXeAl47tl8J30cm3FHUHZg9LKXkE_NMHY06VmYf2_aFtl3yaNeVeUl1TRXCC4Qgt2vZd-vttsFhhgucCeYoPikOcOIdy1hhP_4rz9tLkvZwVqyQkycNX-XYH00OTqw-pf2hzGmQedje6OLd-Bhs3kEIWWweUljqvNRRwu2xzL61wKeBufrSOcx6j3YvmgXh2fQp8HFyaZcND-D3hd_-XWeN0-3q8d-3d7_-X3XL-9bS6EcW0EY59byLkBCteGdQT4YyxiXpjKYZwF6xHCQwjLpnHGQGqQlw5hTCQ05b-5mX5f0Tr3l-FpfoJKO6hNI-VlNO9q9V4wQHLRhgllLJTXaQR6cF1IIRBCZvK5nr7ec3g--jGqXDnmo6ytMGZ0-V6LKIjPL5lRK9uH7VgTVlImaM1FTJuork6q6mlXRe_-t6CDkQhLyAez4hy8</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Joisher, Mansi</creator><creator>Singh, Dharampal</creator><creator>Taheri, Shamsodin</creator><creator>Espinoza-Trejo, Diego R.</creator><creator>Pouresmaeil, Edris</creator><creator>Taheri, Hamed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2079-064X</orcidid></search><sort><creationdate>2020</creationdate><title>A Hybrid Evolutionary-Based MPPT for Photovoltaic Systems Under Partial Shading Conditions</title><author>Joisher, Mansi ; Singh, Dharampal ; Taheri, Shamsodin ; Espinoza-Trejo, Diego R. ; Pouresmaeil, Edris ; Taheri, Hamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-73566cc69f034ab69b1efbc5568bc405e5f0e152f87c58ddbd04b1a85226480b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Converters</topic><topic>differential evaluation</topic><topic>Maximum power point trackers</topic><topic>maximum power point tracking</topic><topic>Maximum power tracking</topic><topic>Microcontrollers</topic><topic>Optimization</topic><topic>partial shading condition</topic><topic>Particle swarm optimization</topic><topic>Performance evaluation</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>Shading</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joisher, Mansi</creatorcontrib><creatorcontrib>Singh, Dharampal</creatorcontrib><creatorcontrib>Taheri, Shamsodin</creatorcontrib><creatorcontrib>Espinoza-Trejo, Diego R.</creatorcontrib><creatorcontrib>Pouresmaeil, Edris</creatorcontrib><creatorcontrib>Taheri, Hamed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joisher, Mansi</au><au>Singh, Dharampal</au><au>Taheri, Shamsodin</au><au>Espinoza-Trejo, Diego R.</au><au>Pouresmaeil, Edris</au><au>Taheri, Hamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Evolutionary-Based MPPT for Photovoltaic Systems Under Partial Shading Conditions</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>38481</spage><epage>38492</epage><pages>38481-38492</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Under partial shading conditions (PSCs), photovoltaic (PV) system characteristics vary and may have multiple power peaks. Conventional maximum power point tracking (MPPT) methods are unable to track the global peak. In addition, it takes a considerable time to reach the maximum power point (MPP). To address these issues, this paper proposes an improved hybrid MPPT method using the conventional evolutional algorithms, i.e., Particle Swarm Optimization (PSO) and Differential Evaluation (DE). The main feature of the proposed hybrid MPPT method is the advantage of one method compensates for shortcomings of the other method. Furthermore, the algorithm is simple and rapid. It can be easily implemented on a low-cost microcontroller. To evaluate the performance of the proposed method, MATLAB simulations are carried out under different PSCc. Experimental verifications are conducted using a boost converter setup, an ET-M53695 panel and a TMS320F28335 DSP. Finally, the simulation and hardware results are compared to those from the PSO and DE methods. The superiority of the hybrid method over PSO and DE methods is highlighted through the results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2975742</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2079-064X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.38481-38492
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2975742
source IEEE Open Access Journals
subjects Algorithms
Convergence
Converters
differential evaluation
Maximum power point trackers
maximum power point tracking
Maximum power tracking
Microcontrollers
Optimization
partial shading condition
Particle swarm optimization
Performance evaluation
Photovoltaic cells
Photovoltaic systems
Shading
Sociology
Statistics
title A Hybrid Evolutionary-Based MPPT for Photovoltaic Systems Under Partial Shading Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Evolutionary-Based%20MPPT%20for%20Photovoltaic%20Systems%20Under%20Partial%20Shading%20Conditions&rft.jtitle=IEEE%20access&rft.au=Joisher,%20Mansi&rft.date=2020&rft.volume=8&rft.spage=38481&rft.epage=38492&rft.pages=38481-38492&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2975742&rft_dat=%3Cproquest_cross%3E2454757481%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-73566cc69f034ab69b1efbc5568bc405e5f0e152f87c58ddbd04b1a85226480b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454757481&rft_id=info:pmid/&rft_ieee_id=9006783&rfr_iscdi=true