Loading…

Adaptive Diagonal Total-Variation Generative Adversarial Network for Super-Resolution Imaging

To address problems that the loss function does not correlate well with perceptual vision in super-resolution methods based on the convolutional neural network(CNN), a novel model called the ADTV-SRGAN is designed based on the adaptive diagonal total-variation generative adversarial network. Combine...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.57517-57526
Main Authors: San-You, Zhang, De-Qiang, Cheng, Dai-Hong, Jiang, Qi-Qi, Kou, Lu, Ma
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3
cites cdi_FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3
container_end_page 57526
container_issue
container_start_page 57517
container_title IEEE access
container_volume 8
creator San-You, Zhang
De-Qiang, Cheng
Dai-Hong, Jiang
Qi-Qi, Kou
Lu, Ma
description To address problems that the loss function does not correlate well with perceptual vision in super-resolution methods based on the convolutional neural network(CNN), a novel model called the ADTV-SRGAN is designed based on the adaptive diagonal total-variation generative adversarial network. Combined with global perception and the local structure adaptive method, spatial loss based on the diagonal variation model is proposed to make the loss function can be adjusted according to the spatial features. Pixel loss and characteristic loss are in combination with the spatial loss for the fusing optimization of the total loss function such that high-frequency details of the images are maintained to improve their quality. The results of experiment show that the proposed method can obtain competitive results in objective evaluations. In subjective assessment, images reconstructed by it are clear, delicate, and natural, and it preserved edge- and texture-related details.
doi_str_mv 10.1109/ACCESS.2020.2981726
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2981726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9040511</ieee_id><doaj_id>oai_doaj_org_article_98d3c371d5704a4bab8b7fd6f521e9a3</doaj_id><sourcerecordid>2453664743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3</originalsourceid><addsrcrecordid>eNpNUU1rwkAQDaWFivUXeAn0HLtfyWaPYq0VpIUqvZVlkp3I2uja3Wjpv280UjqXGWbee8PMi6IhJSNKiXoYTybT5XLECCMjpnIqWXYV9RjNVMJTnl3_q2-jQQgb0kbetlLZiz7GBvaNPWL8aGHtdlDHK9dAnbyDt9BYt4tnuEMPZ8zYHNGH06SOX7D5dv4zrpyPl4c9-uQNg6sPZ858C2u7W99FNxXUAQeX3I9WT9PV5DlZvM7mk_EiKQXJmwSJkgWVSEBUwEWhpGFlVbUFEUalFIlQJQAgywWjBsqUlRnNipRyylXB-9G8kzUONnrv7Rb8j3Zg9bnh_FqDb2xZo1a54SWX1KSSCBAFFHkhK5NVKaOogLda953W3ruvA4ZGb9zBt38Jmon2hZmQ4oTiHar0LgSP1d9WSvTJFd25ok-u6IsrLWvYsSwi_jHaI0lKKf8FqOeJGw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453664743</pqid></control><display><type>article</type><title>Adaptive Diagonal Total-Variation Generative Adversarial Network for Super-Resolution Imaging</title><source>IEEE Open Access Journals</source><creator>San-You, Zhang ; De-Qiang, Cheng ; Dai-Hong, Jiang ; Qi-Qi, Kou ; Lu, Ma</creator><creatorcontrib>San-You, Zhang ; De-Qiang, Cheng ; Dai-Hong, Jiang ; Qi-Qi, Kou ; Lu, Ma</creatorcontrib><description>To address problems that the loss function does not correlate well with perceptual vision in super-resolution methods based on the convolutional neural network(CNN), a novel model called the ADTV-SRGAN is designed based on the adaptive diagonal total-variation generative adversarial network. Combined with global perception and the local structure adaptive method, spatial loss based on the diagonal variation model is proposed to make the loss function can be adjusted according to the spatial features. Pixel loss and characteristic loss are in combination with the spatial loss for the fusing optimization of the total loss function such that high-frequency details of the images are maintained to improve their quality. The results of experiment show that the proposed method can obtain competitive results in objective evaluations. In subjective assessment, images reconstructed by it are clear, delicate, and natural, and it preserved edge- and texture-related details.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2981726</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Artificial neural networks ; Feature extraction ; Gallium nitride ; Generative adversarial network ; Generative adversarial networks ; Image edge detection ; Image quality ; Image reconstruction ; Image resolution ; loss function ; Optimization ; Subjective assessment ; super-resolution imaging ; total variation</subject><ispartof>IEEE access, 2020, Vol.8, p.57517-57526</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3</citedby><cites>FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3</cites><orcidid>0000-0003-2873-2636 ; 0000-0001-8372-292X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9040511$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>San-You, Zhang</creatorcontrib><creatorcontrib>De-Qiang, Cheng</creatorcontrib><creatorcontrib>Dai-Hong, Jiang</creatorcontrib><creatorcontrib>Qi-Qi, Kou</creatorcontrib><creatorcontrib>Lu, Ma</creatorcontrib><title>Adaptive Diagonal Total-Variation Generative Adversarial Network for Super-Resolution Imaging</title><title>IEEE access</title><addtitle>Access</addtitle><description>To address problems that the loss function does not correlate well with perceptual vision in super-resolution methods based on the convolutional neural network(CNN), a novel model called the ADTV-SRGAN is designed based on the adaptive diagonal total-variation generative adversarial network. Combined with global perception and the local structure adaptive method, spatial loss based on the diagonal variation model is proposed to make the loss function can be adjusted according to the spatial features. Pixel loss and characteristic loss are in combination with the spatial loss for the fusing optimization of the total loss function such that high-frequency details of the images are maintained to improve their quality. The results of experiment show that the proposed method can obtain competitive results in objective evaluations. In subjective assessment, images reconstructed by it are clear, delicate, and natural, and it preserved edge- and texture-related details.</description><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>Feature extraction</subject><subject>Gallium nitride</subject><subject>Generative adversarial network</subject><subject>Generative adversarial networks</subject><subject>Image edge detection</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>loss function</subject><subject>Optimization</subject><subject>Subjective assessment</subject><subject>super-resolution imaging</subject><subject>total variation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQDaWFivUXeAn0HLtfyWaPYq0VpIUqvZVlkp3I2uja3Wjpv280UjqXGWbee8PMi6IhJSNKiXoYTybT5XLECCMjpnIqWXYV9RjNVMJTnl3_q2-jQQgb0kbetlLZiz7GBvaNPWL8aGHtdlDHK9dAnbyDt9BYt4tnuEMPZ8zYHNGH06SOX7D5dv4zrpyPl4c9-uQNg6sPZ858C2u7W99FNxXUAQeX3I9WT9PV5DlZvM7mk_EiKQXJmwSJkgWVSEBUwEWhpGFlVbUFEUalFIlQJQAgywWjBsqUlRnNipRyylXB-9G8kzUONnrv7Rb8j3Zg9bnh_FqDb2xZo1a54SWX1KSSCBAFFHkhK5NVKaOogLda953W3ruvA4ZGb9zBt38Jmon2hZmQ4oTiHar0LgSP1d9WSvTJFd25ok-u6IsrLWvYsSwi_jHaI0lKKf8FqOeJGw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>San-You, Zhang</creator><creator>De-Qiang, Cheng</creator><creator>Dai-Hong, Jiang</creator><creator>Qi-Qi, Kou</creator><creator>Lu, Ma</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2873-2636</orcidid><orcidid>https://orcid.org/0000-0001-8372-292X</orcidid></search><sort><creationdate>2020</creationdate><title>Adaptive Diagonal Total-Variation Generative Adversarial Network for Super-Resolution Imaging</title><author>San-You, Zhang ; De-Qiang, Cheng ; Dai-Hong, Jiang ; Qi-Qi, Kou ; Lu, Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>Feature extraction</topic><topic>Gallium nitride</topic><topic>Generative adversarial network</topic><topic>Generative adversarial networks</topic><topic>Image edge detection</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>loss function</topic><topic>Optimization</topic><topic>Subjective assessment</topic><topic>super-resolution imaging</topic><topic>total variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>San-You, Zhang</creatorcontrib><creatorcontrib>De-Qiang, Cheng</creatorcontrib><creatorcontrib>Dai-Hong, Jiang</creatorcontrib><creatorcontrib>Qi-Qi, Kou</creatorcontrib><creatorcontrib>Lu, Ma</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>San-You, Zhang</au><au>De-Qiang, Cheng</au><au>Dai-Hong, Jiang</au><au>Qi-Qi, Kou</au><au>Lu, Ma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Diagonal Total-Variation Generative Adversarial Network for Super-Resolution Imaging</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>57517</spage><epage>57526</epage><pages>57517-57526</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To address problems that the loss function does not correlate well with perceptual vision in super-resolution methods based on the convolutional neural network(CNN), a novel model called the ADTV-SRGAN is designed based on the adaptive diagonal total-variation generative adversarial network. Combined with global perception and the local structure adaptive method, spatial loss based on the diagonal variation model is proposed to make the loss function can be adjusted according to the spatial features. Pixel loss and characteristic loss are in combination with the spatial loss for the fusing optimization of the total loss function such that high-frequency details of the images are maintained to improve their quality. The results of experiment show that the proposed method can obtain competitive results in objective evaluations. In subjective assessment, images reconstructed by it are clear, delicate, and natural, and it preserved edge- and texture-related details.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2981726</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2873-2636</orcidid><orcidid>https://orcid.org/0000-0001-8372-292X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.57517-57526
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2981726
source IEEE Open Access Journals
subjects Adaptation models
Artificial neural networks
Feature extraction
Gallium nitride
Generative adversarial network
Generative adversarial networks
Image edge detection
Image quality
Image reconstruction
Image resolution
loss function
Optimization
Subjective assessment
super-resolution imaging
total variation
title Adaptive Diagonal Total-Variation Generative Adversarial Network for Super-Resolution Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Diagonal%20Total-Variation%20Generative%20Adversarial%20Network%20for%20Super-Resolution%20Imaging&rft.jtitle=IEEE%20access&rft.au=San-You,%20Zhang&rft.date=2020&rft.volume=8&rft.spage=57517&rft.epage=57526&rft.pages=57517-57526&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2981726&rft_dat=%3Cproquest_cross%3E2453664743%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453664743&rft_id=info:pmid/&rft_ieee_id=9040511&rfr_iscdi=true