Loading…
Adaptive Diagonal Total-Variation Generative Adversarial Network for Super-Resolution Imaging
To address problems that the loss function does not correlate well with perceptual vision in super-resolution methods based on the convolutional neural network(CNN), a novel model called the ADTV-SRGAN is designed based on the adaptive diagonal total-variation generative adversarial network. Combine...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.57517-57526 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3 |
container_end_page | 57526 |
container_issue | |
container_start_page | 57517 |
container_title | IEEE access |
container_volume | 8 |
creator | San-You, Zhang De-Qiang, Cheng Dai-Hong, Jiang Qi-Qi, Kou Lu, Ma |
description | To address problems that the loss function does not correlate well with perceptual vision in super-resolution methods based on the convolutional neural network(CNN), a novel model called the ADTV-SRGAN is designed based on the adaptive diagonal total-variation generative adversarial network. Combined with global perception and the local structure adaptive method, spatial loss based on the diagonal variation model is proposed to make the loss function can be adjusted according to the spatial features. Pixel loss and characteristic loss are in combination with the spatial loss for the fusing optimization of the total loss function such that high-frequency details of the images are maintained to improve their quality. The results of experiment show that the proposed method can obtain competitive results in objective evaluations. In subjective assessment, images reconstructed by it are clear, delicate, and natural, and it preserved edge- and texture-related details. |
doi_str_mv | 10.1109/ACCESS.2020.2981726 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2981726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9040511</ieee_id><doaj_id>oai_doaj_org_article_98d3c371d5704a4bab8b7fd6f521e9a3</doaj_id><sourcerecordid>2453664743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3</originalsourceid><addsrcrecordid>eNpNUU1rwkAQDaWFivUXeAn0HLtfyWaPYq0VpIUqvZVlkp3I2uja3Wjpv280UjqXGWbee8PMi6IhJSNKiXoYTybT5XLECCMjpnIqWXYV9RjNVMJTnl3_q2-jQQgb0kbetlLZiz7GBvaNPWL8aGHtdlDHK9dAnbyDt9BYt4tnuEMPZ8zYHNGH06SOX7D5dv4zrpyPl4c9-uQNg6sPZ858C2u7W99FNxXUAQeX3I9WT9PV5DlZvM7mk_EiKQXJmwSJkgWVSEBUwEWhpGFlVbUFEUalFIlQJQAgywWjBsqUlRnNipRyylXB-9G8kzUONnrv7Rb8j3Zg9bnh_FqDb2xZo1a54SWX1KSSCBAFFHkhK5NVKaOogLda953W3ruvA4ZGb9zBt38Jmon2hZmQ4oTiHar0LgSP1d9WSvTJFd25ok-u6IsrLWvYsSwi_jHaI0lKKf8FqOeJGw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453664743</pqid></control><display><type>article</type><title>Adaptive Diagonal Total-Variation Generative Adversarial Network for Super-Resolution Imaging</title><source>IEEE Open Access Journals</source><creator>San-You, Zhang ; De-Qiang, Cheng ; Dai-Hong, Jiang ; Qi-Qi, Kou ; Lu, Ma</creator><creatorcontrib>San-You, Zhang ; De-Qiang, Cheng ; Dai-Hong, Jiang ; Qi-Qi, Kou ; Lu, Ma</creatorcontrib><description>To address problems that the loss function does not correlate well with perceptual vision in super-resolution methods based on the convolutional neural network(CNN), a novel model called the ADTV-SRGAN is designed based on the adaptive diagonal total-variation generative adversarial network. Combined with global perception and the local structure adaptive method, spatial loss based on the diagonal variation model is proposed to make the loss function can be adjusted according to the spatial features. Pixel loss and characteristic loss are in combination with the spatial loss for the fusing optimization of the total loss function such that high-frequency details of the images are maintained to improve their quality. The results of experiment show that the proposed method can obtain competitive results in objective evaluations. In subjective assessment, images reconstructed by it are clear, delicate, and natural, and it preserved edge- and texture-related details.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2981726</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Artificial neural networks ; Feature extraction ; Gallium nitride ; Generative adversarial network ; Generative adversarial networks ; Image edge detection ; Image quality ; Image reconstruction ; Image resolution ; loss function ; Optimization ; Subjective assessment ; super-resolution imaging ; total variation</subject><ispartof>IEEE access, 2020, Vol.8, p.57517-57526</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3</citedby><cites>FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3</cites><orcidid>0000-0003-2873-2636 ; 0000-0001-8372-292X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9040511$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>San-You, Zhang</creatorcontrib><creatorcontrib>De-Qiang, Cheng</creatorcontrib><creatorcontrib>Dai-Hong, Jiang</creatorcontrib><creatorcontrib>Qi-Qi, Kou</creatorcontrib><creatorcontrib>Lu, Ma</creatorcontrib><title>Adaptive Diagonal Total-Variation Generative Adversarial Network for Super-Resolution Imaging</title><title>IEEE access</title><addtitle>Access</addtitle><description>To address problems that the loss function does not correlate well with perceptual vision in super-resolution methods based on the convolutional neural network(CNN), a novel model called the ADTV-SRGAN is designed based on the adaptive diagonal total-variation generative adversarial network. Combined with global perception and the local structure adaptive method, spatial loss based on the diagonal variation model is proposed to make the loss function can be adjusted according to the spatial features. Pixel loss and characteristic loss are in combination with the spatial loss for the fusing optimization of the total loss function such that high-frequency details of the images are maintained to improve their quality. The results of experiment show that the proposed method can obtain competitive results in objective evaluations. In subjective assessment, images reconstructed by it are clear, delicate, and natural, and it preserved edge- and texture-related details.</description><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>Feature extraction</subject><subject>Gallium nitride</subject><subject>Generative adversarial network</subject><subject>Generative adversarial networks</subject><subject>Image edge detection</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>loss function</subject><subject>Optimization</subject><subject>Subjective assessment</subject><subject>super-resolution imaging</subject><subject>total variation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQDaWFivUXeAn0HLtfyWaPYq0VpIUqvZVlkp3I2uja3Wjpv280UjqXGWbee8PMi6IhJSNKiXoYTybT5XLECCMjpnIqWXYV9RjNVMJTnl3_q2-jQQgb0kbetlLZiz7GBvaNPWL8aGHtdlDHK9dAnbyDt9BYt4tnuEMPZ8zYHNGH06SOX7D5dv4zrpyPl4c9-uQNg6sPZ858C2u7W99FNxXUAQeX3I9WT9PV5DlZvM7mk_EiKQXJmwSJkgWVSEBUwEWhpGFlVbUFEUalFIlQJQAgywWjBsqUlRnNipRyylXB-9G8kzUONnrv7Rb8j3Zg9bnh_FqDb2xZo1a54SWX1KSSCBAFFHkhK5NVKaOogLda953W3ruvA4ZGb9zBt38Jmon2hZmQ4oTiHar0LgSP1d9WSvTJFd25ok-u6IsrLWvYsSwi_jHaI0lKKf8FqOeJGw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>San-You, Zhang</creator><creator>De-Qiang, Cheng</creator><creator>Dai-Hong, Jiang</creator><creator>Qi-Qi, Kou</creator><creator>Lu, Ma</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2873-2636</orcidid><orcidid>https://orcid.org/0000-0001-8372-292X</orcidid></search><sort><creationdate>2020</creationdate><title>Adaptive Diagonal Total-Variation Generative Adversarial Network for Super-Resolution Imaging</title><author>San-You, Zhang ; De-Qiang, Cheng ; Dai-Hong, Jiang ; Qi-Qi, Kou ; Lu, Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>Feature extraction</topic><topic>Gallium nitride</topic><topic>Generative adversarial network</topic><topic>Generative adversarial networks</topic><topic>Image edge detection</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>loss function</topic><topic>Optimization</topic><topic>Subjective assessment</topic><topic>super-resolution imaging</topic><topic>total variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>San-You, Zhang</creatorcontrib><creatorcontrib>De-Qiang, Cheng</creatorcontrib><creatorcontrib>Dai-Hong, Jiang</creatorcontrib><creatorcontrib>Qi-Qi, Kou</creatorcontrib><creatorcontrib>Lu, Ma</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>San-You, Zhang</au><au>De-Qiang, Cheng</au><au>Dai-Hong, Jiang</au><au>Qi-Qi, Kou</au><au>Lu, Ma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Diagonal Total-Variation Generative Adversarial Network for Super-Resolution Imaging</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>57517</spage><epage>57526</epage><pages>57517-57526</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To address problems that the loss function does not correlate well with perceptual vision in super-resolution methods based on the convolutional neural network(CNN), a novel model called the ADTV-SRGAN is designed based on the adaptive diagonal total-variation generative adversarial network. Combined with global perception and the local structure adaptive method, spatial loss based on the diagonal variation model is proposed to make the loss function can be adjusted according to the spatial features. Pixel loss and characteristic loss are in combination with the spatial loss for the fusing optimization of the total loss function such that high-frequency details of the images are maintained to improve their quality. The results of experiment show that the proposed method can obtain competitive results in objective evaluations. In subjective assessment, images reconstructed by it are clear, delicate, and natural, and it preserved edge- and texture-related details.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2981726</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2873-2636</orcidid><orcidid>https://orcid.org/0000-0001-8372-292X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.57517-57526 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_2981726 |
source | IEEE Open Access Journals |
subjects | Adaptation models Artificial neural networks Feature extraction Gallium nitride Generative adversarial network Generative adversarial networks Image edge detection Image quality Image reconstruction Image resolution loss function Optimization Subjective assessment super-resolution imaging total variation |
title | Adaptive Diagonal Total-Variation Generative Adversarial Network for Super-Resolution Imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Diagonal%20Total-Variation%20Generative%20Adversarial%20Network%20for%20Super-Resolution%20Imaging&rft.jtitle=IEEE%20access&rft.au=San-You,%20Zhang&rft.date=2020&rft.volume=8&rft.spage=57517&rft.epage=57526&rft.pages=57517-57526&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2981726&rft_dat=%3Cproquest_cross%3E2453664743%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-e097b17e0a4fa34b97d2cff4b904d951e049caaae28421dac52c616b513139b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453664743&rft_id=info:pmid/&rft_ieee_id=9040511&rfr_iscdi=true |