Loading…
Centralized MPPT controller system of PV modules by a wireless sensor network
An efficient monitoring and control system for solar photovoltaic modules, which combines the use of a non-linear MPPT backstepping controller with a custom wireless sensor network (WSN) has been developed. The infrastructure consists of a wireless smart photovoltaic system (WSPS) and a wireless cen...
Saved in:
Published in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-27ccdd2e843937f876cffc1c9106da36120613a942e8a74cf80e3071ad4f7dd23 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-27ccdd2e843937f876cffc1c9106da36120613a942e8a74cf80e3071ad4f7dd23 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Martin, Aranzazu D. Cano, J. M. Medina-Garcia, J. Gomez-Galan, J.A. Vazquez, Jesus R. |
description | An efficient monitoring and control system for solar photovoltaic modules, which combines the use of a non-linear MPPT backstepping controller with a custom wireless sensor network (WSN) has been developed. The infrastructure consists of a wireless smart photovoltaic system (WSPS) and a wireless centralized control system (WCC). The data of sensing, coordination and control is handled by using a WSN based on IEEE 802.15.4 technology in beacon enable mode and with guaranteed time slot. This assures the data transmission and a synchronous acquisition, which are critical elements in a wireless photovoltaic monitoring system. All measured data is gathered by an autonomous, compact and low-cost sensor node installed in each PV module, and it is transferred to the coordinator node. The power consumption of the sensor node represents only 0.25% of the power delivered by the photovoltaic module. A backstepping controller to track the Maximum Power Point (MPP) by means of a buck-boost converter derives the reference parameters to return to each PV module accordingly. The wireless solution uses low latency techniques to achieve a real-time monitoring and a stable performance of the controller. The centralized control identifies all the network nodes and significantly simplifies the maintenance operations. Experimental validation shows the robustness against interference and security in the wireless data transmission and confirms the feasibility of the proposed wireless sensor system in tracking the maximum power transfer under different weather conditions, achieving an efficiency over the 99% in the MPPT. |
doi_str_mv | 10.1109/ACCESS.2020.2987621 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2987621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9064773</ieee_id><doaj_id>oai_doaj_org_article_63e9d7c1bb694545b8700ed55b265f03</doaj_id><sourcerecordid>2453703736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-27ccdd2e843937f876cffc1c9106da36120613a942e8a74cf80e3071ad4f7dd23</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBUv0FXgKeW_O1yeZYFr_AYsHqNWSTiWzdNppsKfXXm7pFnMvMPN57M_CK4orgKSFY3czq-vblZUoxxVOqKikoOSlGlAg1YSUTp__m8-IypRXOVWWolKNiXsOmj6Zrv8Gh-WKxRDZkIHQdRJT2qYc1Ch4t3tA6uG0HCTV7ZNCujZCXhBJsUohoA_0uxI-L4sybLsHlsY-L17vbZf0weXq-f6xnTxPLcdVPqLTWOQoVZ4pJn1-23ltiFcHCGSYIxYIwo3imGMmtrzAwLIlx3MssZOPicfB1waz0Z2zXJu51MK3-BUJ81yb2re1ACwbKSUuaRihe8rKpJMbgyrKhovSYZa_rweszhq8tpF6vwjZu8vua8pJJzCQTmcUGlo0hpQj-7yrB-hCDHmLQhxj0MYasuhpULQD8KRQWXErGfgBZLIJm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453703736</pqid></control><display><type>article</type><title>Centralized MPPT controller system of PV modules by a wireless sensor network</title><source>IEEE Open Access Journals</source><creator>Martin, Aranzazu D. ; Cano, J. M. ; Medina-Garcia, J. ; Gomez-Galan, J.A. ; Vazquez, Jesus R.</creator><creatorcontrib>Martin, Aranzazu D. ; Cano, J. M. ; Medina-Garcia, J. ; Gomez-Galan, J.A. ; Vazquez, Jesus R.</creatorcontrib><description>An efficient monitoring and control system for solar photovoltaic modules, which combines the use of a non-linear MPPT backstepping controller with a custom wireless sensor network (WSN) has been developed. The infrastructure consists of a wireless smart photovoltaic system (WSPS) and a wireless centralized control system (WCC). The data of sensing, coordination and control is handled by using a WSN based on IEEE 802.15.4 technology in beacon enable mode and with guaranteed time slot. This assures the data transmission and a synchronous acquisition, which are critical elements in a wireless photovoltaic monitoring system. All measured data is gathered by an autonomous, compact and low-cost sensor node installed in each PV module, and it is transferred to the coordinator node. The power consumption of the sensor node represents only 0.25% of the power delivered by the photovoltaic module. A backstepping controller to track the Maximum Power Point (MPP) by means of a buck-boost converter derives the reference parameters to return to each PV module accordingly. The wireless solution uses low latency techniques to achieve a real-time monitoring and a stable performance of the controller. The centralized control identifies all the network nodes and significantly simplifies the maintenance operations. Experimental validation shows the robustness against interference and security in the wireless data transmission and confirms the feasibility of the proposed wireless sensor system in tracking the maximum power transfer under different weather conditions, achieving an efficiency over the 99% in the MPPT.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2987621</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Backstepping control ; Control systems ; Controllers ; Converters ; Data transmission ; Energy conversion efficiency ; IEEE 802.15.4 communication ; Maximum power transfer ; Modules ; Monitoring ; Network latency ; Nodes ; Nonlinear control ; Photovoltaic cells ; photovoltaic monitoring systems ; Power consumption ; Sensors ; Weather ; Wireless networks ; wireless sensor network ; Wireless sensor networks</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-27ccdd2e843937f876cffc1c9106da36120613a942e8a74cf80e3071ad4f7dd23</citedby><cites>FETCH-LOGICAL-c408t-27ccdd2e843937f876cffc1c9106da36120613a942e8a74cf80e3071ad4f7dd23</cites><orcidid>0000-0002-6940-6418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9064773$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Martin, Aranzazu D.</creatorcontrib><creatorcontrib>Cano, J. M.</creatorcontrib><creatorcontrib>Medina-Garcia, J.</creatorcontrib><creatorcontrib>Gomez-Galan, J.A.</creatorcontrib><creatorcontrib>Vazquez, Jesus R.</creatorcontrib><title>Centralized MPPT controller system of PV modules by a wireless sensor network</title><title>IEEE access</title><addtitle>Access</addtitle><description>An efficient monitoring and control system for solar photovoltaic modules, which combines the use of a non-linear MPPT backstepping controller with a custom wireless sensor network (WSN) has been developed. The infrastructure consists of a wireless smart photovoltaic system (WSPS) and a wireless centralized control system (WCC). The data of sensing, coordination and control is handled by using a WSN based on IEEE 802.15.4 technology in beacon enable mode and with guaranteed time slot. This assures the data transmission and a synchronous acquisition, which are critical elements in a wireless photovoltaic monitoring system. All measured data is gathered by an autonomous, compact and low-cost sensor node installed in each PV module, and it is transferred to the coordinator node. The power consumption of the sensor node represents only 0.25% of the power delivered by the photovoltaic module. A backstepping controller to track the Maximum Power Point (MPP) by means of a buck-boost converter derives the reference parameters to return to each PV module accordingly. The wireless solution uses low latency techniques to achieve a real-time monitoring and a stable performance of the controller. The centralized control identifies all the network nodes and significantly simplifies the maintenance operations. Experimental validation shows the robustness against interference and security in the wireless data transmission and confirms the feasibility of the proposed wireless sensor system in tracking the maximum power transfer under different weather conditions, achieving an efficiency over the 99% in the MPPT.</description><subject>Backstepping control</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Converters</subject><subject>Data transmission</subject><subject>Energy conversion efficiency</subject><subject>IEEE 802.15.4 communication</subject><subject>Maximum power transfer</subject><subject>Modules</subject><subject>Monitoring</subject><subject>Network latency</subject><subject>Nodes</subject><subject>Nonlinear control</subject><subject>Photovoltaic cells</subject><subject>photovoltaic monitoring systems</subject><subject>Power consumption</subject><subject>Sensors</subject><subject>Weather</subject><subject>Wireless networks</subject><subject>wireless sensor network</subject><subject>Wireless sensor networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBUv0FXgKeW_O1yeZYFr_AYsHqNWSTiWzdNppsKfXXm7pFnMvMPN57M_CK4orgKSFY3czq-vblZUoxxVOqKikoOSlGlAg1YSUTp__m8-IypRXOVWWolKNiXsOmj6Zrv8Gh-WKxRDZkIHQdRJT2qYc1Ch4t3tA6uG0HCTV7ZNCujZCXhBJsUohoA_0uxI-L4sybLsHlsY-L17vbZf0weXq-f6xnTxPLcdVPqLTWOQoVZ4pJn1-23ltiFcHCGSYIxYIwo3imGMmtrzAwLIlx3MssZOPicfB1waz0Z2zXJu51MK3-BUJ81yb2re1ACwbKSUuaRihe8rKpJMbgyrKhovSYZa_rweszhq8tpF6vwjZu8vua8pJJzCQTmcUGlo0hpQj-7yrB-hCDHmLQhxj0MYasuhpULQD8KRQWXErGfgBZLIJm</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Martin, Aranzazu D.</creator><creator>Cano, J. M.</creator><creator>Medina-Garcia, J.</creator><creator>Gomez-Galan, J.A.</creator><creator>Vazquez, Jesus R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6940-6418</orcidid></search><sort><creationdate>20200101</creationdate><title>Centralized MPPT controller system of PV modules by a wireless sensor network</title><author>Martin, Aranzazu D. ; Cano, J. M. ; Medina-Garcia, J. ; Gomez-Galan, J.A. ; Vazquez, Jesus R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-27ccdd2e843937f876cffc1c9106da36120613a942e8a74cf80e3071ad4f7dd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Backstepping control</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Converters</topic><topic>Data transmission</topic><topic>Energy conversion efficiency</topic><topic>IEEE 802.15.4 communication</topic><topic>Maximum power transfer</topic><topic>Modules</topic><topic>Monitoring</topic><topic>Network latency</topic><topic>Nodes</topic><topic>Nonlinear control</topic><topic>Photovoltaic cells</topic><topic>photovoltaic monitoring systems</topic><topic>Power consumption</topic><topic>Sensors</topic><topic>Weather</topic><topic>Wireless networks</topic><topic>wireless sensor network</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Aranzazu D.</creatorcontrib><creatorcontrib>Cano, J. M.</creatorcontrib><creatorcontrib>Medina-Garcia, J.</creatorcontrib><creatorcontrib>Gomez-Galan, J.A.</creatorcontrib><creatorcontrib>Vazquez, Jesus R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Aranzazu D.</au><au>Cano, J. M.</au><au>Medina-Garcia, J.</au><au>Gomez-Galan, J.A.</au><au>Vazquez, Jesus R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Centralized MPPT controller system of PV modules by a wireless sensor network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>An efficient monitoring and control system for solar photovoltaic modules, which combines the use of a non-linear MPPT backstepping controller with a custom wireless sensor network (WSN) has been developed. The infrastructure consists of a wireless smart photovoltaic system (WSPS) and a wireless centralized control system (WCC). The data of sensing, coordination and control is handled by using a WSN based on IEEE 802.15.4 technology in beacon enable mode and with guaranteed time slot. This assures the data transmission and a synchronous acquisition, which are critical elements in a wireless photovoltaic monitoring system. All measured data is gathered by an autonomous, compact and low-cost sensor node installed in each PV module, and it is transferred to the coordinator node. The power consumption of the sensor node represents only 0.25% of the power delivered by the photovoltaic module. A backstepping controller to track the Maximum Power Point (MPP) by means of a buck-boost converter derives the reference parameters to return to each PV module accordingly. The wireless solution uses low latency techniques to achieve a real-time monitoring and a stable performance of the controller. The centralized control identifies all the network nodes and significantly simplifies the maintenance operations. Experimental validation shows the robustness against interference and security in the wireless data transmission and confirms the feasibility of the proposed wireless sensor system in tracking the maximum power transfer under different weather conditions, achieving an efficiency over the 99% in the MPPT.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2987621</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6940-6418</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_2987621 |
source | IEEE Open Access Journals |
subjects | Backstepping control Control systems Controllers Converters Data transmission Energy conversion efficiency IEEE 802.15.4 communication Maximum power transfer Modules Monitoring Network latency Nodes Nonlinear control Photovoltaic cells photovoltaic monitoring systems Power consumption Sensors Weather Wireless networks wireless sensor network Wireless sensor networks |
title | Centralized MPPT controller system of PV modules by a wireless sensor network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Centralized%20MPPT%20controller%20system%20of%20PV%20modules%20by%20a%20wireless%20sensor%20network&rft.jtitle=IEEE%20access&rft.au=Martin,%20Aranzazu%20D.&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2987621&rft_dat=%3Cproquest_cross%3E2453703736%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-27ccdd2e843937f876cffc1c9106da36120613a942e8a74cf80e3071ad4f7dd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2453703736&rft_id=info:pmid/&rft_ieee_id=9064773&rfr_iscdi=true |