Loading…
A data-driven approach for assembling intertrochanteric fractures by axis-position alignment
In clinics, the reduction of femoral intertrochanteric fractures should meet the medical demands of both axis alignment and position alignment. State-of-the-art approaches are designed for merely position alignment, not allowing for axis alignment. The axis-position alignment can be formulated as a...
Saved in:
Published in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Deng, Ziyue Jiang, Junfeng Liu, HongWei Chen, Zhengming Huang, Rui Zhang, Wenxi He, Kunjin |
description | In clinics, the reduction of femoral intertrochanteric fractures should meet the medical demands of both axis alignment and position alignment. State-of-the-art approaches are designed for merely position alignment, not allowing for axis alignment. The axis-position alignment can be formulated as a least square optimization problem with the inequality constraints. The main challenges include how to solve this constrained optimization problem and effectively extract the semantic of the randomly fractured bone pieces. To address these problems, a semi-automatic data-driven method is introduced. First, the medical semantic parameters are computed, at the beginning of when the 3D input pieces' anatomical areas are labeled by using the deep neural network. A statistical shape model is leveraged to generate the synthetic training data so as to learn the anatomical landmarks of the pieces, greatly reducing the labeling costs for training. The final reduction position of the pieces is obtained through iterative axis alignment and position alignment. Our method is evaluated by three baselines, i.e., the manual assembly of the orthopaedic specialists and two typical bone assembling methods. The presented method solves an optimization problem for assembling intertrochanteric fracture by axis-position alignment. All cases can be successfully assembled with the developed algorithm which is proved to be capable of reaching the clinical demand. |
doi_str_mv | 10.1109/ACCESS.2020.3012047 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3012047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9149603</ieee_id><doaj_id>oai_doaj_org_article_a885832f2e6b4b708e9d4f2dab3d67a0</doaj_id><sourcerecordid>2454641325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3</originalsourceid><addsrcrecordid>eNpNUctKA0EQXERBUb_Ay4LnjT3P3T2G4AsED-pNGHrnESckO3FmIvr3TlwR-9JF0VXddFXVBYEZIdBfzReL66enGQUKMwaEAm8PqhNKZN8wweThP3xcnae0glJdoUR7Ur3Oa4MZGxP9hx1r3G5jQP1WuxBrTMluhrUfl7Ufs405Bv2Ge-R17SLqvIs21cNXjZ8-NduQfPahmKz9ctzYMZ9VRw7XyZ7_9tPq5eb6eXHXPDze3i_mD43m0OXGMUDCYUCBhQAjqO614WIwTvAepXAWJWBrsGsLpmAoo04LjaR1nTTstLqffE3AldpGv8H4pQJ69UOEuFQYs9drq7DrRFfU1MqBDy10tjfcUYMDM7JFKF6Xk1d5xPvOpqxWYRfHcr6iXHDJCaOiTLFpSseQUrTubysBtU9FTamofSrqN5WiuphU3lr7p-gJ7yUw9g3RRIpB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454641325</pqid></control><display><type>article</type><title>A data-driven approach for assembling intertrochanteric fractures by axis-position alignment</title><source>IEEE Open Access Journals</source><creator>Deng, Ziyue ; Jiang, Junfeng ; Liu, HongWei ; Chen, Zhengming ; Huang, Rui ; Zhang, Wenxi ; He, Kunjin</creator><creatorcontrib>Deng, Ziyue ; Jiang, Junfeng ; Liu, HongWei ; Chen, Zhengming ; Huang, Rui ; Zhang, Wenxi ; He, Kunjin</creatorcontrib><description>In clinics, the reduction of femoral intertrochanteric fractures should meet the medical demands of both axis alignment and position alignment. State-of-the-art approaches are designed for merely position alignment, not allowing for axis alignment. The axis-position alignment can be formulated as a least square optimization problem with the inequality constraints. The main challenges include how to solve this constrained optimization problem and effectively extract the semantic of the randomly fractured bone pieces. To address these problems, a semi-automatic data-driven method is introduced. First, the medical semantic parameters are computed, at the beginning of when the 3D input pieces' anatomical areas are labeled by using the deep neural network. A statistical shape model is leveraged to generate the synthetic training data so as to learn the anatomical landmarks of the pieces, greatly reducing the labeling costs for training. The final reduction position of the pieces is obtained through iterative axis alignment and position alignment. Our method is evaluated by three baselines, i.e., the manual assembly of the orthopaedic specialists and two typical bone assembling methods. The presented method solves an optimization problem for assembling intertrochanteric fracture by axis-position alignment. All cases can be successfully assembled with the developed algorithm which is proved to be capable of reaching the clinical demand.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3012047</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D model ; Algorithms ; Alignment ; Artificial neural networks ; Assembling ; axis-position alignment ; Bones ; Constraints ; data-driven ; fracture reduction ; Fractures ; intertrochanteric fracture ; Iterative methods ; Optimization ; Orthopedics ; Semantics ; Shafts ; Shape ; Surface cracks ; Three-dimensional displays ; Training</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3</citedby><cites>FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3</cites><orcidid>0000-0001-5357-7127 ; 0000-0003-2216-3380 ; 0000-0002-0298-3149 ; 0000-0002-8863-4838 ; 0000-0002-0843-858X ; 0000-0002-5763-1503 ; 0000-0001-8430-0227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9149603$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Deng, Ziyue</creatorcontrib><creatorcontrib>Jiang, Junfeng</creatorcontrib><creatorcontrib>Liu, HongWei</creatorcontrib><creatorcontrib>Chen, Zhengming</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhang, Wenxi</creatorcontrib><creatorcontrib>He, Kunjin</creatorcontrib><title>A data-driven approach for assembling intertrochanteric fractures by axis-position alignment</title><title>IEEE access</title><addtitle>Access</addtitle><description>In clinics, the reduction of femoral intertrochanteric fractures should meet the medical demands of both axis alignment and position alignment. State-of-the-art approaches are designed for merely position alignment, not allowing for axis alignment. The axis-position alignment can be formulated as a least square optimization problem with the inequality constraints. The main challenges include how to solve this constrained optimization problem and effectively extract the semantic of the randomly fractured bone pieces. To address these problems, a semi-automatic data-driven method is introduced. First, the medical semantic parameters are computed, at the beginning of when the 3D input pieces' anatomical areas are labeled by using the deep neural network. A statistical shape model is leveraged to generate the synthetic training data so as to learn the anatomical landmarks of the pieces, greatly reducing the labeling costs for training. The final reduction position of the pieces is obtained through iterative axis alignment and position alignment. Our method is evaluated by three baselines, i.e., the manual assembly of the orthopaedic specialists and two typical bone assembling methods. The presented method solves an optimization problem for assembling intertrochanteric fracture by axis-position alignment. All cases can be successfully assembled with the developed algorithm which is proved to be capable of reaching the clinical demand.</description><subject>3D model</subject><subject>Algorithms</subject><subject>Alignment</subject><subject>Artificial neural networks</subject><subject>Assembling</subject><subject>axis-position alignment</subject><subject>Bones</subject><subject>Constraints</subject><subject>data-driven</subject><subject>fracture reduction</subject><subject>Fractures</subject><subject>intertrochanteric fracture</subject><subject>Iterative methods</subject><subject>Optimization</subject><subject>Orthopedics</subject><subject>Semantics</subject><subject>Shafts</subject><subject>Shape</subject><subject>Surface cracks</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKA0EQXERBUb_Ay4LnjT3P3T2G4AsED-pNGHrnESckO3FmIvr3TlwR-9JF0VXddFXVBYEZIdBfzReL66enGQUKMwaEAm8PqhNKZN8wweThP3xcnae0glJdoUR7Ur3Oa4MZGxP9hx1r3G5jQP1WuxBrTMluhrUfl7Ufs405Bv2Ge-R17SLqvIs21cNXjZ8-NduQfPahmKz9ctzYMZ9VRw7XyZ7_9tPq5eb6eXHXPDze3i_mD43m0OXGMUDCYUCBhQAjqO614WIwTvAepXAWJWBrsGsLpmAoo04LjaR1nTTstLqffE3AldpGv8H4pQJ69UOEuFQYs9drq7DrRFfU1MqBDy10tjfcUYMDM7JFKF6Xk1d5xPvOpqxWYRfHcr6iXHDJCaOiTLFpSseQUrTubysBtU9FTamofSrqN5WiuphU3lr7p-gJ7yUw9g3RRIpB</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Deng, Ziyue</creator><creator>Jiang, Junfeng</creator><creator>Liu, HongWei</creator><creator>Chen, Zhengming</creator><creator>Huang, Rui</creator><creator>Zhang, Wenxi</creator><creator>He, Kunjin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5357-7127</orcidid><orcidid>https://orcid.org/0000-0003-2216-3380</orcidid><orcidid>https://orcid.org/0000-0002-0298-3149</orcidid><orcidid>https://orcid.org/0000-0002-8863-4838</orcidid><orcidid>https://orcid.org/0000-0002-0843-858X</orcidid><orcidid>https://orcid.org/0000-0002-5763-1503</orcidid><orcidid>https://orcid.org/0000-0001-8430-0227</orcidid></search><sort><creationdate>20200101</creationdate><title>A data-driven approach for assembling intertrochanteric fractures by axis-position alignment</title><author>Deng, Ziyue ; Jiang, Junfeng ; Liu, HongWei ; Chen, Zhengming ; Huang, Rui ; Zhang, Wenxi ; He, Kunjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D model</topic><topic>Algorithms</topic><topic>Alignment</topic><topic>Artificial neural networks</topic><topic>Assembling</topic><topic>axis-position alignment</topic><topic>Bones</topic><topic>Constraints</topic><topic>data-driven</topic><topic>fracture reduction</topic><topic>Fractures</topic><topic>intertrochanteric fracture</topic><topic>Iterative methods</topic><topic>Optimization</topic><topic>Orthopedics</topic><topic>Semantics</topic><topic>Shafts</topic><topic>Shape</topic><topic>Surface cracks</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Ziyue</creatorcontrib><creatorcontrib>Jiang, Junfeng</creatorcontrib><creatorcontrib>Liu, HongWei</creatorcontrib><creatorcontrib>Chen, Zhengming</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhang, Wenxi</creatorcontrib><creatorcontrib>He, Kunjin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Ziyue</au><au>Jiang, Junfeng</au><au>Liu, HongWei</au><au>Chen, Zhengming</au><au>Huang, Rui</au><au>Zhang, Wenxi</au><au>He, Kunjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data-driven approach for assembling intertrochanteric fractures by axis-position alignment</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In clinics, the reduction of femoral intertrochanteric fractures should meet the medical demands of both axis alignment and position alignment. State-of-the-art approaches are designed for merely position alignment, not allowing for axis alignment. The axis-position alignment can be formulated as a least square optimization problem with the inequality constraints. The main challenges include how to solve this constrained optimization problem and effectively extract the semantic of the randomly fractured bone pieces. To address these problems, a semi-automatic data-driven method is introduced. First, the medical semantic parameters are computed, at the beginning of when the 3D input pieces' anatomical areas are labeled by using the deep neural network. A statistical shape model is leveraged to generate the synthetic training data so as to learn the anatomical landmarks of the pieces, greatly reducing the labeling costs for training. The final reduction position of the pieces is obtained through iterative axis alignment and position alignment. Our method is evaluated by three baselines, i.e., the manual assembly of the orthopaedic specialists and two typical bone assembling methods. The presented method solves an optimization problem for assembling intertrochanteric fracture by axis-position alignment. All cases can be successfully assembled with the developed algorithm which is proved to be capable of reaching the clinical demand.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3012047</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5357-7127</orcidid><orcidid>https://orcid.org/0000-0003-2216-3380</orcidid><orcidid>https://orcid.org/0000-0002-0298-3149</orcidid><orcidid>https://orcid.org/0000-0002-8863-4838</orcidid><orcidid>https://orcid.org/0000-0002-0843-858X</orcidid><orcidid>https://orcid.org/0000-0002-5763-1503</orcidid><orcidid>https://orcid.org/0000-0001-8430-0227</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3012047 |
source | IEEE Open Access Journals |
subjects | 3D model Algorithms Alignment Artificial neural networks Assembling axis-position alignment Bones Constraints data-driven fracture reduction Fractures intertrochanteric fracture Iterative methods Optimization Orthopedics Semantics Shafts Shape Surface cracks Three-dimensional displays Training |
title | A data-driven approach for assembling intertrochanteric fractures by axis-position alignment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data-driven%20approach%20for%20assembling%20intertrochanteric%20fractures%20by%20axis-position%20alignment&rft.jtitle=IEEE%20access&rft.au=Deng,%20Ziyue&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3012047&rft_dat=%3Cproquest_cross%3E2454641325%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454641325&rft_id=info:pmid/&rft_ieee_id=9149603&rfr_iscdi=true |