Loading…

A data-driven approach for assembling intertrochanteric fractures by axis-position alignment

In clinics, the reduction of femoral intertrochanteric fractures should meet the medical demands of both axis alignment and position alignment. State-of-the-art approaches are designed for merely position alignment, not allowing for axis alignment. The axis-position alignment can be formulated as a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020-01, Vol.8, p.1-1
Main Authors: Deng, Ziyue, Jiang, Junfeng, Liu, HongWei, Chen, Zhengming, Huang, Rui, Zhang, Wenxi, He, Kunjin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3
cites cdi_FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Deng, Ziyue
Jiang, Junfeng
Liu, HongWei
Chen, Zhengming
Huang, Rui
Zhang, Wenxi
He, Kunjin
description In clinics, the reduction of femoral intertrochanteric fractures should meet the medical demands of both axis alignment and position alignment. State-of-the-art approaches are designed for merely position alignment, not allowing for axis alignment. The axis-position alignment can be formulated as a least square optimization problem with the inequality constraints. The main challenges include how to solve this constrained optimization problem and effectively extract the semantic of the randomly fractured bone pieces. To address these problems, a semi-automatic data-driven method is introduced. First, the medical semantic parameters are computed, at the beginning of when the 3D input pieces' anatomical areas are labeled by using the deep neural network. A statistical shape model is leveraged to generate the synthetic training data so as to learn the anatomical landmarks of the pieces, greatly reducing the labeling costs for training. The final reduction position of the pieces is obtained through iterative axis alignment and position alignment. Our method is evaluated by three baselines, i.e., the manual assembly of the orthopaedic specialists and two typical bone assembling methods. The presented method solves an optimization problem for assembling intertrochanteric fracture by axis-position alignment. All cases can be successfully assembled with the developed algorithm which is proved to be capable of reaching the clinical demand.
doi_str_mv 10.1109/ACCESS.2020.3012047
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3012047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9149603</ieee_id><doaj_id>oai_doaj_org_article_a885832f2e6b4b708e9d4f2dab3d67a0</doaj_id><sourcerecordid>2454641325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3</originalsourceid><addsrcrecordid>eNpNUctKA0EQXERBUb_Ay4LnjT3P3T2G4AsED-pNGHrnESckO3FmIvr3TlwR-9JF0VXddFXVBYEZIdBfzReL66enGQUKMwaEAm8PqhNKZN8wweThP3xcnae0glJdoUR7Ur3Oa4MZGxP9hx1r3G5jQP1WuxBrTMluhrUfl7Ufs405Bv2Ge-R17SLqvIs21cNXjZ8-NduQfPahmKz9ctzYMZ9VRw7XyZ7_9tPq5eb6eXHXPDze3i_mD43m0OXGMUDCYUCBhQAjqO614WIwTvAepXAWJWBrsGsLpmAoo04LjaR1nTTstLqffE3AldpGv8H4pQJ69UOEuFQYs9drq7DrRFfU1MqBDy10tjfcUYMDM7JFKF6Xk1d5xPvOpqxWYRfHcr6iXHDJCaOiTLFpSseQUrTubysBtU9FTamofSrqN5WiuphU3lr7p-gJ7yUw9g3RRIpB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454641325</pqid></control><display><type>article</type><title>A data-driven approach for assembling intertrochanteric fractures by axis-position alignment</title><source>IEEE Open Access Journals</source><creator>Deng, Ziyue ; Jiang, Junfeng ; Liu, HongWei ; Chen, Zhengming ; Huang, Rui ; Zhang, Wenxi ; He, Kunjin</creator><creatorcontrib>Deng, Ziyue ; Jiang, Junfeng ; Liu, HongWei ; Chen, Zhengming ; Huang, Rui ; Zhang, Wenxi ; He, Kunjin</creatorcontrib><description>In clinics, the reduction of femoral intertrochanteric fractures should meet the medical demands of both axis alignment and position alignment. State-of-the-art approaches are designed for merely position alignment, not allowing for axis alignment. The axis-position alignment can be formulated as a least square optimization problem with the inequality constraints. The main challenges include how to solve this constrained optimization problem and effectively extract the semantic of the randomly fractured bone pieces. To address these problems, a semi-automatic data-driven method is introduced. First, the medical semantic parameters are computed, at the beginning of when the 3D input pieces' anatomical areas are labeled by using the deep neural network. A statistical shape model is leveraged to generate the synthetic training data so as to learn the anatomical landmarks of the pieces, greatly reducing the labeling costs for training. The final reduction position of the pieces is obtained through iterative axis alignment and position alignment. Our method is evaluated by three baselines, i.e., the manual assembly of the orthopaedic specialists and two typical bone assembling methods. The presented method solves an optimization problem for assembling intertrochanteric fracture by axis-position alignment. All cases can be successfully assembled with the developed algorithm which is proved to be capable of reaching the clinical demand.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3012047</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D model ; Algorithms ; Alignment ; Artificial neural networks ; Assembling ; axis-position alignment ; Bones ; Constraints ; data-driven ; fracture reduction ; Fractures ; intertrochanteric fracture ; Iterative methods ; Optimization ; Orthopedics ; Semantics ; Shafts ; Shape ; Surface cracks ; Three-dimensional displays ; Training</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3</citedby><cites>FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3</cites><orcidid>0000-0001-5357-7127 ; 0000-0003-2216-3380 ; 0000-0002-0298-3149 ; 0000-0002-8863-4838 ; 0000-0002-0843-858X ; 0000-0002-5763-1503 ; 0000-0001-8430-0227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9149603$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Deng, Ziyue</creatorcontrib><creatorcontrib>Jiang, Junfeng</creatorcontrib><creatorcontrib>Liu, HongWei</creatorcontrib><creatorcontrib>Chen, Zhengming</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhang, Wenxi</creatorcontrib><creatorcontrib>He, Kunjin</creatorcontrib><title>A data-driven approach for assembling intertrochanteric fractures by axis-position alignment</title><title>IEEE access</title><addtitle>Access</addtitle><description>In clinics, the reduction of femoral intertrochanteric fractures should meet the medical demands of both axis alignment and position alignment. State-of-the-art approaches are designed for merely position alignment, not allowing for axis alignment. The axis-position alignment can be formulated as a least square optimization problem with the inequality constraints. The main challenges include how to solve this constrained optimization problem and effectively extract the semantic of the randomly fractured bone pieces. To address these problems, a semi-automatic data-driven method is introduced. First, the medical semantic parameters are computed, at the beginning of when the 3D input pieces' anatomical areas are labeled by using the deep neural network. A statistical shape model is leveraged to generate the synthetic training data so as to learn the anatomical landmarks of the pieces, greatly reducing the labeling costs for training. The final reduction position of the pieces is obtained through iterative axis alignment and position alignment. Our method is evaluated by three baselines, i.e., the manual assembly of the orthopaedic specialists and two typical bone assembling methods. The presented method solves an optimization problem for assembling intertrochanteric fracture by axis-position alignment. All cases can be successfully assembled with the developed algorithm which is proved to be capable of reaching the clinical demand.</description><subject>3D model</subject><subject>Algorithms</subject><subject>Alignment</subject><subject>Artificial neural networks</subject><subject>Assembling</subject><subject>axis-position alignment</subject><subject>Bones</subject><subject>Constraints</subject><subject>data-driven</subject><subject>fracture reduction</subject><subject>Fractures</subject><subject>intertrochanteric fracture</subject><subject>Iterative methods</subject><subject>Optimization</subject><subject>Orthopedics</subject><subject>Semantics</subject><subject>Shafts</subject><subject>Shape</subject><subject>Surface cracks</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKA0EQXERBUb_Ay4LnjT3P3T2G4AsED-pNGHrnESckO3FmIvr3TlwR-9JF0VXddFXVBYEZIdBfzReL66enGQUKMwaEAm8PqhNKZN8wweThP3xcnae0glJdoUR7Ur3Oa4MZGxP9hx1r3G5jQP1WuxBrTMluhrUfl7Ufs405Bv2Ge-R17SLqvIs21cNXjZ8-NduQfPahmKz9ctzYMZ9VRw7XyZ7_9tPq5eb6eXHXPDze3i_mD43m0OXGMUDCYUCBhQAjqO614WIwTvAepXAWJWBrsGsLpmAoo04LjaR1nTTstLqffE3AldpGv8H4pQJ69UOEuFQYs9drq7DrRFfU1MqBDy10tjfcUYMDM7JFKF6Xk1d5xPvOpqxWYRfHcr6iXHDJCaOiTLFpSseQUrTubysBtU9FTamofSrqN5WiuphU3lr7p-gJ7yUw9g3RRIpB</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Deng, Ziyue</creator><creator>Jiang, Junfeng</creator><creator>Liu, HongWei</creator><creator>Chen, Zhengming</creator><creator>Huang, Rui</creator><creator>Zhang, Wenxi</creator><creator>He, Kunjin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5357-7127</orcidid><orcidid>https://orcid.org/0000-0003-2216-3380</orcidid><orcidid>https://orcid.org/0000-0002-0298-3149</orcidid><orcidid>https://orcid.org/0000-0002-8863-4838</orcidid><orcidid>https://orcid.org/0000-0002-0843-858X</orcidid><orcidid>https://orcid.org/0000-0002-5763-1503</orcidid><orcidid>https://orcid.org/0000-0001-8430-0227</orcidid></search><sort><creationdate>20200101</creationdate><title>A data-driven approach for assembling intertrochanteric fractures by axis-position alignment</title><author>Deng, Ziyue ; Jiang, Junfeng ; Liu, HongWei ; Chen, Zhengming ; Huang, Rui ; Zhang, Wenxi ; He, Kunjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D model</topic><topic>Algorithms</topic><topic>Alignment</topic><topic>Artificial neural networks</topic><topic>Assembling</topic><topic>axis-position alignment</topic><topic>Bones</topic><topic>Constraints</topic><topic>data-driven</topic><topic>fracture reduction</topic><topic>Fractures</topic><topic>intertrochanteric fracture</topic><topic>Iterative methods</topic><topic>Optimization</topic><topic>Orthopedics</topic><topic>Semantics</topic><topic>Shafts</topic><topic>Shape</topic><topic>Surface cracks</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Ziyue</creatorcontrib><creatorcontrib>Jiang, Junfeng</creatorcontrib><creatorcontrib>Liu, HongWei</creatorcontrib><creatorcontrib>Chen, Zhengming</creatorcontrib><creatorcontrib>Huang, Rui</creatorcontrib><creatorcontrib>Zhang, Wenxi</creatorcontrib><creatorcontrib>He, Kunjin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Ziyue</au><au>Jiang, Junfeng</au><au>Liu, HongWei</au><au>Chen, Zhengming</au><au>Huang, Rui</au><au>Zhang, Wenxi</au><au>He, Kunjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data-driven approach for assembling intertrochanteric fractures by axis-position alignment</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In clinics, the reduction of femoral intertrochanteric fractures should meet the medical demands of both axis alignment and position alignment. State-of-the-art approaches are designed for merely position alignment, not allowing for axis alignment. The axis-position alignment can be formulated as a least square optimization problem with the inequality constraints. The main challenges include how to solve this constrained optimization problem and effectively extract the semantic of the randomly fractured bone pieces. To address these problems, a semi-automatic data-driven method is introduced. First, the medical semantic parameters are computed, at the beginning of when the 3D input pieces' anatomical areas are labeled by using the deep neural network. A statistical shape model is leveraged to generate the synthetic training data so as to learn the anatomical landmarks of the pieces, greatly reducing the labeling costs for training. The final reduction position of the pieces is obtained through iterative axis alignment and position alignment. Our method is evaluated by three baselines, i.e., the manual assembly of the orthopaedic specialists and two typical bone assembling methods. The presented method solves an optimization problem for assembling intertrochanteric fracture by axis-position alignment. All cases can be successfully assembled with the developed algorithm which is proved to be capable of reaching the clinical demand.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3012047</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5357-7127</orcidid><orcidid>https://orcid.org/0000-0003-2216-3380</orcidid><orcidid>https://orcid.org/0000-0002-0298-3149</orcidid><orcidid>https://orcid.org/0000-0002-8863-4838</orcidid><orcidid>https://orcid.org/0000-0002-0843-858X</orcidid><orcidid>https://orcid.org/0000-0002-5763-1503</orcidid><orcidid>https://orcid.org/0000-0001-8430-0227</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3012047
source IEEE Open Access Journals
subjects 3D model
Algorithms
Alignment
Artificial neural networks
Assembling
axis-position alignment
Bones
Constraints
data-driven
fracture reduction
Fractures
intertrochanteric fracture
Iterative methods
Optimization
Orthopedics
Semantics
Shafts
Shape
Surface cracks
Three-dimensional displays
Training
title A data-driven approach for assembling intertrochanteric fractures by axis-position alignment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data-driven%20approach%20for%20assembling%20intertrochanteric%20fractures%20by%20axis-position%20alignment&rft.jtitle=IEEE%20access&rft.au=Deng,%20Ziyue&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3012047&rft_dat=%3Cproquest_cross%3E2454641325%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-f30a140ba5ac400d52c9cd45bdf549a65fea60a7da875fe20d232fc5ca17f86d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454641325&rft_id=info:pmid/&rft_ieee_id=9149603&rfr_iscdi=true