Loading…
A Cost-Effective 2-Channel OTDM System Implemented with Sinusoidally Modulated Light Source
We propose to implement a 2-channel optical-time-division-multiplexed (OTDM) system for short-reach optical interconnects by using a sinusoidally modulated light source instead of a complicated mode-locked laser as an input pulse source. In this system, the OTDM signal is obtained by bit-interleavin...
Saved in:
Published in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose to implement a 2-channel optical-time-division-multiplexed (OTDM) system for short-reach optical interconnects by using a sinusoidally modulated light source instead of a complicated mode-locked laser as an input pulse source. In this system, the OTDM signal is obtained by bit-interleaving two optical return-to-zero (RZ) signals generated by using the sinusoidally modulated light. We operate these RZ signals in the orthogonal in-phase and quadrature domains to avoid the unwanted beat components. After the transmission, the OTDM signal is detected by using single photodetector, and then processed by a 2Ă—2 multiple-input multiple-output equalizer. For a demonstration, we generate 150-Gb/s OTDM signal operating in the 8-level pulse-amplitude modulated (PAM-8) format by using commercial LiNbO3 Mach-Zehnder modulators and transmit this OTDM signal over 1.9 km of the standard single-mode fiber (SSMF). In addition, we fabricate the proposed OTDM transmitter in an integrated silicon-photonics chip and use it to demonstrate the transmission of the 64-Gb/s OTDM PAM-4 signal over 2.2 km of SSMF. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.3016969 |