Loading…

A Brief Survey on Breast Cancer Diagnostic With Deep Learning Schemes Using Multi-Image Modalities

Patients with breast cancer are prone to serious health-related complications with higher mortality. The primary reason might be a misinterpretation of radiologists in recognizing suspicious lesions due to technical issues in imaging qualities and heterogeneous breast densities which increases the f...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.165779-165809
Main Authors: Mahmood, Tariq, Li, Jianqiang, Pei, Yan, Akhtar, Faheem, Imran, Azhar, Rehman, Khalil Ur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Patients with breast cancer are prone to serious health-related complications with higher mortality. The primary reason might be a misinterpretation of radiologists in recognizing suspicious lesions due to technical issues in imaging qualities and heterogeneous breast densities which increases the false-(positive and negative) ratio. Early intervention is significant in establishing an up-to-date prognosis process which can successfully mitigate complications of disease with higher recovery. The manual screening of breast abnormalities through traditional machine learning schemes misinterpret the inconsistent feature-extraction process which poses a problem, i.e., patients being called-back for biopsies to eliminates the suspicions. However, several deep learning-based methods have been developed for reliable breast cancer prognosis and classification but very few of them provided a comprehensive overview of lesions segmentation. This research focusses on providing benefits and risks of breast multi-imaging modalities, segmentation schemes, feature extraction, classification of breast abnormalities through state-of-the-art deep learning approaches. This research also explores various well-known databases using "Breast Cancer" keyword to present a comprehensive survey on existing diagnostic schemes to open-up new research challenges for radiologists and researchers to intervene as early as possible to develop an efficient and reliable breast cancer prognosis system using prominent deep learning schemes.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3021343