Loading…
An FPGA Kalman-MPPT Implementation Adapted in SST-Based Dual Active Bridge Converters for DC Microgrids Systems
The design of digital hardware controllers for the integration of renewable energy sources in DC microgrids is a research topic of interest. In this paper, a Kalman filter-based maximum power point tracking algorithm is implemented in an FPGA and adapted in a dual active bridge (DAB) converter topol...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.202946-202957 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design of digital hardware controllers for the integration of renewable energy sources in DC microgrids is a research topic of interest. In this paper, a Kalman filter-based maximum power point tracking algorithm is implemented in an FPGA and adapted in a dual active bridge (DAB) converter topology for DC microgrids. This approach uses the Hardware/Software (HW/SW) co-design paradigm in combination with a pipelined piecewise polynomial approximation design of the Kalman-maximum power point tracking (MPPT) algorithm instead of traditional lookup table (LUT)-based methods. Experimental results reveal a good integration of the Kalman-MPPT design with the DAB-based converter, particularly during irradiation and temperature variations due to changes in weather conditions, as well as a good-balanced hardware design in complexity and area-time performance compared to other state-of-art FPGA designs. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.3033718 |