Loading…
Iso-m Based Adaptive Fractional Order Control With Application to a Soft Robotic Neck
This article proposes an adaptive fractional feedback control using recursive least squares algorithm for plant identification and a recent real-time method (iso-m) for fractional controller tuning. The combination of both methods allows keeping the same original performance specifications invariant...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.198964-198976 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-b99e70262ec00d10e56234d6c444b5fa207f4187de94a7f37d19dc28613937643 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-b99e70262ec00d10e56234d6c444b5fa207f4187de94a7f37d19dc28613937643 |
container_end_page | 198976 |
container_issue | |
container_start_page | 198964 |
container_title | IEEE access |
container_volume | 8 |
creator | Munoz, Jorge Copaci, Dorin S. Monje, Concepcion A. Blanco, Dolores Balaguer, Carlos |
description | This article proposes an adaptive fractional feedback control using recursive least squares algorithm for plant identification and a recent real-time method (iso-m) for fractional controller tuning. The combination of both methods allows keeping the same original performance specifications invariant, combining adaptability and robustness in a single scheme. Thanks to the robust controller, the system performance is maintained around a specified operating point, and due to the adaptive scheme, this operating point is adjusted depending on plant changes. Extensive experimentation of the proposal is carried out in a real platform with non-linear time varying properties, a soft robotic neck made of 3D printer soft materials. The experiments proposed consist in the neck inclination control using tilt sensors installed on the tip. According to expectations, an invariant performance despite plant parameter changes was observed throughout the experiments. The good results obtained in the proposed test platform suggest that the benefits of this control scheme are suitable for other nonlinear time varying applications. |
doi_str_mv | 10.1109/ACCESS.2020.3035450 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3035450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9247181</ieee_id><doaj_id>oai_doaj_org_article_0ebd334c3f4f4940a1ce5aaabb81bb30</doaj_id><sourcerecordid>2460158390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b99e70262ec00d10e56234d6c444b5fa207f4187de94a7f37d19dc28613937643</originalsourceid><addsrcrecordid>eNpNUU1r3DAQFaWFhk1-wV4EPXs7-vCHjhuTpAshgW6XHsVYGrfeOJEjKYH--3rrEDqXGR7vzQzvMbYWsBECzNdt217t9xsJEjYKVKlL-MDOpKhMoUpVffxv_swuUjrCXM0MlfUZO-xSKB75JSbyfOtxysMr8euILg_hCUd-Hz1F3oanHMPIfw75N99O0zg4PBF4Dhz5PvSZfw9dyIPjd-QeztmnHsdEF299xQ7XVz_ab8Xt_c2u3d4WTkOTi84YqkFWkhyAF0BlJZX2ldNad2WPEupei6b2ZDTWvaq9MN7JphLKqLrSasV2y14f8GinODxi_GMDDvYfEOIvi3F-aiQL1HmltFO97rXRgMJRiYhd14ium31bsS_LrimG5xdK2R7DS5wtSFbqCkTZKHNiqYXlYkgpUv9-VYA9xWGXOOwpDvsWx6xaL6qBiN4VRupaNEL9BTL0hBE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460158390</pqid></control><display><type>article</type><title>Iso-m Based Adaptive Fractional Order Control With Application to a Soft Robotic Neck</title><source>IEEE Xplore Open Access Journals</source><creator>Munoz, Jorge ; Copaci, Dorin S. ; Monje, Concepcion A. ; Blanco, Dolores ; Balaguer, Carlos</creator><creatorcontrib>Munoz, Jorge ; Copaci, Dorin S. ; Monje, Concepcion A. ; Blanco, Dolores ; Balaguer, Carlos</creatorcontrib><description>This article proposes an adaptive fractional feedback control using recursive least squares algorithm for plant identification and a recent real-time method (iso-m) for fractional controller tuning. The combination of both methods allows keeping the same original performance specifications invariant, combining adaptability and robustness in a single scheme. Thanks to the robust controller, the system performance is maintained around a specified operating point, and due to the adaptive scheme, this operating point is adjusted depending on plant changes. Extensive experimentation of the proposal is carried out in a real platform with non-linear time varying properties, a soft robotic neck made of 3D printer soft materials. The experiments proposed consist in the neck inclination control using tilt sensors installed on the tip. According to expectations, an invariant performance despite plant parameter changes was observed throughout the experiments. The good results obtained in the proposed test platform suggest that the benefits of this control scheme are suitable for other nonlinear time varying applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3035450</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Adaptive systems ; Algorithms ; bio-inspired neck ; Controllers ; Experimentation ; Feedback control ; fractional robust control ; Invariants ; Neck ; Robust control ; Robustness ; Sensors ; Soft robotics ; Three dimensional printing ; Time-varying systems ; Tuning</subject><ispartof>IEEE access, 2020, Vol.8, p.198964-198976</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b99e70262ec00d10e56234d6c444b5fa207f4187de94a7f37d19dc28613937643</citedby><cites>FETCH-LOGICAL-c408t-b99e70262ec00d10e56234d6c444b5fa207f4187de94a7f37d19dc28613937643</cites><orcidid>0000-0003-1820-1831 ; 0000-0001-6300-5165 ; 0000-0001-8295-127X ; 0000-0002-3070-0994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9247181$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Munoz, Jorge</creatorcontrib><creatorcontrib>Copaci, Dorin S.</creatorcontrib><creatorcontrib>Monje, Concepcion A.</creatorcontrib><creatorcontrib>Blanco, Dolores</creatorcontrib><creatorcontrib>Balaguer, Carlos</creatorcontrib><title>Iso-m Based Adaptive Fractional Order Control With Application to a Soft Robotic Neck</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article proposes an adaptive fractional feedback control using recursive least squares algorithm for plant identification and a recent real-time method (iso-m) for fractional controller tuning. The combination of both methods allows keeping the same original performance specifications invariant, combining adaptability and robustness in a single scheme. Thanks to the robust controller, the system performance is maintained around a specified operating point, and due to the adaptive scheme, this operating point is adjusted depending on plant changes. Extensive experimentation of the proposal is carried out in a real platform with non-linear time varying properties, a soft robotic neck made of 3D printer soft materials. The experiments proposed consist in the neck inclination control using tilt sensors installed on the tip. According to expectations, an invariant performance despite plant parameter changes was observed throughout the experiments. The good results obtained in the proposed test platform suggest that the benefits of this control scheme are suitable for other nonlinear time varying applications.</description><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>bio-inspired neck</subject><subject>Controllers</subject><subject>Experimentation</subject><subject>Feedback control</subject><subject>fractional robust control</subject><subject>Invariants</subject><subject>Neck</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Sensors</subject><subject>Soft robotics</subject><subject>Three dimensional printing</subject><subject>Time-varying systems</subject><subject>Tuning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQFaWFhk1-wV4EPXs7-vCHjhuTpAshgW6XHsVYGrfeOJEjKYH--3rrEDqXGR7vzQzvMbYWsBECzNdt217t9xsJEjYKVKlL-MDOpKhMoUpVffxv_swuUjrCXM0MlfUZO-xSKB75JSbyfOtxysMr8euILg_hCUd-Hz1F3oanHMPIfw75N99O0zg4PBF4Dhz5PvSZfw9dyIPjd-QeztmnHsdEF299xQ7XVz_ab8Xt_c2u3d4WTkOTi84YqkFWkhyAF0BlJZX2ldNad2WPEupei6b2ZDTWvaq9MN7JphLKqLrSasV2y14f8GinODxi_GMDDvYfEOIvi3F-aiQL1HmltFO97rXRgMJRiYhd14ium31bsS_LrimG5xdK2R7DS5wtSFbqCkTZKHNiqYXlYkgpUv9-VYA9xWGXOOwpDvsWx6xaL6qBiN4VRupaNEL9BTL0hBE</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Munoz, Jorge</creator><creator>Copaci, Dorin S.</creator><creator>Monje, Concepcion A.</creator><creator>Blanco, Dolores</creator><creator>Balaguer, Carlos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1820-1831</orcidid><orcidid>https://orcid.org/0000-0001-6300-5165</orcidid><orcidid>https://orcid.org/0000-0001-8295-127X</orcidid><orcidid>https://orcid.org/0000-0002-3070-0994</orcidid></search><sort><creationdate>2020</creationdate><title>Iso-m Based Adaptive Fractional Order Control With Application to a Soft Robotic Neck</title><author>Munoz, Jorge ; Copaci, Dorin S. ; Monje, Concepcion A. ; Blanco, Dolores ; Balaguer, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b99e70262ec00d10e56234d6c444b5fa207f4187de94a7f37d19dc28613937643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>bio-inspired neck</topic><topic>Controllers</topic><topic>Experimentation</topic><topic>Feedback control</topic><topic>fractional robust control</topic><topic>Invariants</topic><topic>Neck</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Sensors</topic><topic>Soft robotics</topic><topic>Three dimensional printing</topic><topic>Time-varying systems</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munoz, Jorge</creatorcontrib><creatorcontrib>Copaci, Dorin S.</creatorcontrib><creatorcontrib>Monje, Concepcion A.</creatorcontrib><creatorcontrib>Blanco, Dolores</creatorcontrib><creatorcontrib>Balaguer, Carlos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munoz, Jorge</au><au>Copaci, Dorin S.</au><au>Monje, Concepcion A.</au><au>Blanco, Dolores</au><au>Balaguer, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iso-m Based Adaptive Fractional Order Control With Application to a Soft Robotic Neck</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>198964</spage><epage>198976</epage><pages>198964-198976</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article proposes an adaptive fractional feedback control using recursive least squares algorithm for plant identification and a recent real-time method (iso-m) for fractional controller tuning. The combination of both methods allows keeping the same original performance specifications invariant, combining adaptability and robustness in a single scheme. Thanks to the robust controller, the system performance is maintained around a specified operating point, and due to the adaptive scheme, this operating point is adjusted depending on plant changes. Extensive experimentation of the proposal is carried out in a real platform with non-linear time varying properties, a soft robotic neck made of 3D printer soft materials. The experiments proposed consist in the neck inclination control using tilt sensors installed on the tip. According to expectations, an invariant performance despite plant parameter changes was observed throughout the experiments. The good results obtained in the proposed test platform suggest that the benefits of this control scheme are suitable for other nonlinear time varying applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3035450</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1820-1831</orcidid><orcidid>https://orcid.org/0000-0001-6300-5165</orcidid><orcidid>https://orcid.org/0000-0001-8295-127X</orcidid><orcidid>https://orcid.org/0000-0002-3070-0994</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.198964-198976 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_3035450 |
source | IEEE Xplore Open Access Journals |
subjects | Adaptive control Adaptive systems Algorithms bio-inspired neck Controllers Experimentation Feedback control fractional robust control Invariants Neck Robust control Robustness Sensors Soft robotics Three dimensional printing Time-varying systems Tuning |
title | Iso-m Based Adaptive Fractional Order Control With Application to a Soft Robotic Neck |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iso-m%20Based%20Adaptive%20Fractional%20Order%20Control%20With%20Application%20to%20a%20Soft%20Robotic%20Neck&rft.jtitle=IEEE%20access&rft.au=Munoz,%20Jorge&rft.date=2020&rft.volume=8&rft.spage=198964&rft.epage=198976&rft.pages=198964-198976&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3035450&rft_dat=%3Cproquest_cross%3E2460158390%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-b99e70262ec00d10e56234d6c444b5fa207f4187de94a7f37d19dc28613937643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2460158390&rft_id=info:pmid/&rft_ieee_id=9247181&rfr_iscdi=true |