Loading…

Desmoking Laparoscopy Surgery Images Using an Image-to-Image Translation Guided by an Embedded Dark Channel

In this paper, a method to remove the smoke effects in laparoscopic images is presented. The proposed method is based on an image-to-image conditional generative adversarial network endowed with a dark channel's embedded guide mask. The obtained experimental results were evaluated and quantitat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.208898-208909
Main Authors: Salazar-Colores, Sebastian, Jimenez, Hugo Moreno, Ortiz-Echeverri, Cesar Javier, Flores, Gerardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-61968bdef107e6f5ab494debeaebb80e5c70ab647e791bd24d1d517322cd5d73
cites cdi_FETCH-LOGICAL-c408t-61968bdef107e6f5ab494debeaebb80e5c70ab647e791bd24d1d517322cd5d73
container_end_page 208909
container_issue
container_start_page 208898
container_title IEEE access
container_volume 8
creator Salazar-Colores, Sebastian
Jimenez, Hugo Moreno
Ortiz-Echeverri, Cesar Javier
Flores, Gerardo
description In this paper, a method to remove the smoke effects in laparoscopic images is presented. The proposed method is based on an image-to-image conditional generative adversarial network endowed with a dark channel's embedded guide mask. The obtained experimental results were evaluated and quantitatively compared with desmoking state-of-art methods using the Peak Signal-to-Noise Ratio (PSNR) metrics and Structural Similarity (SSIM) index. Those results throw an improved performance compared with relevant works. Also, the processing time required by our method is 92 frames per second; a processing time that sets the foundation for a possible real-time implementation in a more modest embedded system.
doi_str_mv 10.1109/ACCESS.2020.3038437
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3038437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9261326</ieee_id><doaj_id>oai_doaj_org_article_35e2fe2d43e549b1b2cf6c748976dc39</doaj_id><sourcerecordid>2465666482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-61968bdef107e6f5ab494debeaebb80e5c70ab647e791bd24d1d517322cd5d73</originalsourceid><addsrcrecordid>eNpNUclOwzAQjRBIVMAX9BKJc4p3x0cUClSqxKHlbHmZlHSJi50e-vckDULMZRa992Y0L8umGM0wRurpuarmq9WMIIJmFNGSUXmVTQgWqqCciut_9W32kNIW9VH2Iy4n2e4F0iHsmnaTL83RxJBcOJ7z1SluIJ7zxcFsIOWfaQCYduyLLhSXIl9H06a96ZrQ5m-nxoPP7XnAzQ8W_NC-mLjLqy_TtrC_z25qs0_w8JvvsvXrfF29F8uPt0X1vCwcQ2VXCKxEaT3UGEkQNTeWKebBggFrSwTcSWSsYBKkwtYT5rHnWFJCnOde0rtsMcr6YLb6GJuDiWcdTKMvgxA32sSucXvQlAOpgXhGgTNlsSWuFk6yUknhHVW91uOodYzh-wSp09twim1_vSZMcCEEK0mPoiPK9f9LEeq_rRjpwSM9eqQHj_SvRz1rOrIaAPhjKCIwJYL-AEhFjWo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465666482</pqid></control><display><type>article</type><title>Desmoking Laparoscopy Surgery Images Using an Image-to-Image Translation Guided by an Embedded Dark Channel</title><source>IEEE Open Access Journals</source><creator>Salazar-Colores, Sebastian ; Jimenez, Hugo Moreno ; Ortiz-Echeverri, Cesar Javier ; Flores, Gerardo</creator><creatorcontrib>Salazar-Colores, Sebastian ; Jimenez, Hugo Moreno ; Ortiz-Echeverri, Cesar Javier ; Flores, Gerardo</creatorcontrib><description>In this paper, a method to remove the smoke effects in laparoscopic images is presented. The proposed method is based on an image-to-image conditional generative adversarial network endowed with a dark channel's embedded guide mask. The obtained experimental results were evaluated and quantitatively compared with desmoking state-of-art methods using the Peak Signal-to-Noise Ratio (PSNR) metrics and Structural Similarity (SSIM) index. Those results throw an improved performance compared with relevant works. Also, the processing time required by our method is 92 frames per second; a processing time that sets the foundation for a possible real-time implementation in a more modest embedded system.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3038437</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Channel estimation ; conditional generative adversarial network ; dark channel ; Embedded systems ; Frames per second ; Generative adversarial networks ; Generators ; Image color analysis ; image smoke removal ; Laparoscopes ; Laparoscopy ; Minimally invasive surgery ; Neural networks ; Signal to noise ratio</subject><ispartof>IEEE access, 2020, Vol.8, p.208898-208909</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-61968bdef107e6f5ab494debeaebb80e5c70ab647e791bd24d1d517322cd5d73</citedby><cites>FETCH-LOGICAL-c408t-61968bdef107e6f5ab494debeaebb80e5c70ab647e791bd24d1d517322cd5d73</cites><orcidid>0000-0002-6353-0864 ; 0000-0003-2107-7405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9261326$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Salazar-Colores, Sebastian</creatorcontrib><creatorcontrib>Jimenez, Hugo Moreno</creatorcontrib><creatorcontrib>Ortiz-Echeverri, Cesar Javier</creatorcontrib><creatorcontrib>Flores, Gerardo</creatorcontrib><title>Desmoking Laparoscopy Surgery Images Using an Image-to-Image Translation Guided by an Embedded Dark Channel</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, a method to remove the smoke effects in laparoscopic images is presented. The proposed method is based on an image-to-image conditional generative adversarial network endowed with a dark channel's embedded guide mask. The obtained experimental results were evaluated and quantitatively compared with desmoking state-of-art methods using the Peak Signal-to-Noise Ratio (PSNR) metrics and Structural Similarity (SSIM) index. Those results throw an improved performance compared with relevant works. Also, the processing time required by our method is 92 frames per second; a processing time that sets the foundation for a possible real-time implementation in a more modest embedded system.</description><subject>Channel estimation</subject><subject>conditional generative adversarial network</subject><subject>dark channel</subject><subject>Embedded systems</subject><subject>Frames per second</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Image color analysis</subject><subject>image smoke removal</subject><subject>Laparoscopes</subject><subject>Laparoscopy</subject><subject>Minimally invasive surgery</subject><subject>Neural networks</subject><subject>Signal to noise ratio</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclOwzAQjRBIVMAX9BKJc4p3x0cUClSqxKHlbHmZlHSJi50e-vckDULMZRa992Y0L8umGM0wRurpuarmq9WMIIJmFNGSUXmVTQgWqqCciut_9W32kNIW9VH2Iy4n2e4F0iHsmnaTL83RxJBcOJ7z1SluIJ7zxcFsIOWfaQCYduyLLhSXIl9H06a96ZrQ5m-nxoPP7XnAzQ8W_NC-mLjLqy_TtrC_z25qs0_w8JvvsvXrfF29F8uPt0X1vCwcQ2VXCKxEaT3UGEkQNTeWKebBggFrSwTcSWSsYBKkwtYT5rHnWFJCnOde0rtsMcr6YLb6GJuDiWcdTKMvgxA32sSucXvQlAOpgXhGgTNlsSWuFk6yUknhHVW91uOodYzh-wSp09twim1_vSZMcCEEK0mPoiPK9f9LEeq_rRjpwSM9eqQHj_SvRz1rOrIaAPhjKCIwJYL-AEhFjWo</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Salazar-Colores, Sebastian</creator><creator>Jimenez, Hugo Moreno</creator><creator>Ortiz-Echeverri, Cesar Javier</creator><creator>Flores, Gerardo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6353-0864</orcidid><orcidid>https://orcid.org/0000-0003-2107-7405</orcidid></search><sort><creationdate>2020</creationdate><title>Desmoking Laparoscopy Surgery Images Using an Image-to-Image Translation Guided by an Embedded Dark Channel</title><author>Salazar-Colores, Sebastian ; Jimenez, Hugo Moreno ; Ortiz-Echeverri, Cesar Javier ; Flores, Gerardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-61968bdef107e6f5ab494debeaebb80e5c70ab647e791bd24d1d517322cd5d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Channel estimation</topic><topic>conditional generative adversarial network</topic><topic>dark channel</topic><topic>Embedded systems</topic><topic>Frames per second</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Image color analysis</topic><topic>image smoke removal</topic><topic>Laparoscopes</topic><topic>Laparoscopy</topic><topic>Minimally invasive surgery</topic><topic>Neural networks</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar-Colores, Sebastian</creatorcontrib><creatorcontrib>Jimenez, Hugo Moreno</creatorcontrib><creatorcontrib>Ortiz-Echeverri, Cesar Javier</creatorcontrib><creatorcontrib>Flores, Gerardo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salazar-Colores, Sebastian</au><au>Jimenez, Hugo Moreno</au><au>Ortiz-Echeverri, Cesar Javier</au><au>Flores, Gerardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Desmoking Laparoscopy Surgery Images Using an Image-to-Image Translation Guided by an Embedded Dark Channel</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>208898</spage><epage>208909</epage><pages>208898-208909</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, a method to remove the smoke effects in laparoscopic images is presented. The proposed method is based on an image-to-image conditional generative adversarial network endowed with a dark channel's embedded guide mask. The obtained experimental results were evaluated and quantitatively compared with desmoking state-of-art methods using the Peak Signal-to-Noise Ratio (PSNR) metrics and Structural Similarity (SSIM) index. Those results throw an improved performance compared with relevant works. Also, the processing time required by our method is 92 frames per second; a processing time that sets the foundation for a possible real-time implementation in a more modest embedded system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3038437</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6353-0864</orcidid><orcidid>https://orcid.org/0000-0003-2107-7405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.208898-208909
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3038437
source IEEE Open Access Journals
subjects Channel estimation
conditional generative adversarial network
dark channel
Embedded systems
Frames per second
Generative adversarial networks
Generators
Image color analysis
image smoke removal
Laparoscopes
Laparoscopy
Minimally invasive surgery
Neural networks
Signal to noise ratio
title Desmoking Laparoscopy Surgery Images Using an Image-to-Image Translation Guided by an Embedded Dark Channel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Desmoking%20Laparoscopy%20Surgery%20Images%20Using%20an%20Image-to-Image%20Translation%20Guided%20by%20an%20Embedded%20Dark%20Channel&rft.jtitle=IEEE%20access&rft.au=Salazar-Colores,%20Sebastian&rft.date=2020&rft.volume=8&rft.spage=208898&rft.epage=208909&rft.pages=208898-208909&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3038437&rft_dat=%3Cproquest_cross%3E2465666482%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-61968bdef107e6f5ab494debeaebb80e5c70ab647e791bd24d1d517322cd5d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2465666482&rft_id=info:pmid/&rft_ieee_id=9261326&rfr_iscdi=true