Loading…

Applying Convolutional Neural Networks With Different Word Representation Techniques to Recommend Bug Fixers

Bug triage processes are intended to assign bug reports to appropriate developers effectively, but they typically become bottlenecks in the development process-especially for large-scale software projects. Recently, several machine learning approaches, including deep learning-based approaches, have...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.213729-213747
Main Authors: Zaidi, Syed Farhan Alam, Awan, Faraz Malik, Lee, Minsoo, Woo, Honguk, Lee, Chan-Gun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-3e61487cd5683106655ef0b9fd77d1d0eff04d59935e04702c15d53b7d3a68c13
cites cdi_FETCH-LOGICAL-c408t-3e61487cd5683106655ef0b9fd77d1d0eff04d59935e04702c15d53b7d3a68c13
container_end_page 213747
container_issue
container_start_page 213729
container_title IEEE access
container_volume 8
creator Zaidi, Syed Farhan Alam
Awan, Faraz Malik
Lee, Minsoo
Woo, Honguk
Lee, Chan-Gun
description Bug triage processes are intended to assign bug reports to appropriate developers effectively, but they typically become bottlenecks in the development process-especially for large-scale software projects. Recently, several machine learning approaches, including deep learning-based approaches, have been proposed to recommend an appropriate developer automatically by learning past assignment patterns. In this paper, we propose a deep learning-based bug triage technique using a convolutional neural network (CNN) with three different word representation techniques: Word to Vector (Word2Vec), Global Vector (GloVe), and Embeddings from Language Models (ELMo). Experiments were performed on datasets from well-known large-scale open-source projects, such as Eclipse and Mozilla, and top-k accuracy was measured as an evaluation metric. The experimental results suggest that the ELMo-based CNN approach performs best for the bug triage problem. GloVe-based CNN slightly outperforms Word2Vec-based CNN in many cases. Word2Vec-based CNN outperforms GloVe-based CNN when the number of samples per class in the dataset is high enough.
doi_str_mv 10.1109/ACCESS.2020.3040065
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_3040065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9268164</ieee_id><doaj_id>oai_doaj_org_article_cff2af7a93f741eebab14664b1320465</doaj_id><sourcerecordid>2468760554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3e61487cd5683106655ef0b9fd77d1d0eff04d59935e04702c15d53b7d3a68c13</originalsourceid><addsrcrecordid>eNpNkU1P3DAQhqOqSEWUX8DFUs-7HccfSY7bFAoSaiWg4mg59njxNhundlLg3-MlCNWX8Xy8r-V5iuKMwppSaL5u2vb89nZdQglrBhxAig_FcUlls2KCyY__3T8VpyntIJ86l0R1XPSbceyf_bAlbRj-hX6efBh0T37iHF_D9Bjin0Tu_fRAvnvnMOIwkfsQLbnBMWLKqT6IyB2ah8H_nTGRKeSmCfs9DpZ8m7fkwj9hTJ-LI6f7hKdv8aT4fXF-116urn_9uGo31yvDoZ5WDCXldWWskDWjIKUQ6KBrnK0qSy2gc8CtaBomEHgFpaHCCtZVlmlZG8pOiqvF1wa9U2P0ex2fVdBevRZC3CodJ296VMa5UrtKN8xVnCJ2uqNcSt5RVgKXInt9WbzGGA5_m9QuzDGvKKmSy7qSIATPU2yZMjGkFNG9v0pBHSiphZI6UFJvlLLqbFF5RHxXNKXMdDh7AWg2jmA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468760554</pqid></control><display><type>article</type><title>Applying Convolutional Neural Networks With Different Word Representation Techniques to Recommend Bug Fixers</title><source>IEEE Open Access Journals</source><creator>Zaidi, Syed Farhan Alam ; Awan, Faraz Malik ; Lee, Minsoo ; Woo, Honguk ; Lee, Chan-Gun</creator><creatorcontrib>Zaidi, Syed Farhan Alam ; Awan, Faraz Malik ; Lee, Minsoo ; Woo, Honguk ; Lee, Chan-Gun</creatorcontrib><description>Bug triage processes are intended to assign bug reports to appropriate developers effectively, but they typically become bottlenecks in the development process-especially for large-scale software projects. Recently, several machine learning approaches, including deep learning-based approaches, have been proposed to recommend an appropriate developer automatically by learning past assignment patterns. In this paper, we propose a deep learning-based bug triage technique using a convolutional neural network (CNN) with three different word representation techniques: Word to Vector (Word2Vec), Global Vector (GloVe), and Embeddings from Language Models (ELMo). Experiments were performed on datasets from well-known large-scale open-source projects, such as Eclipse and Mozilla, and top-k accuracy was measured as an evaluation metric. The experimental results suggest that the ELMo-based CNN approach performs best for the bug triage problem. GloVe-based CNN slightly outperforms Word2Vec-based CNN in many cases. Word2Vec-based CNN outperforms GloVe-based CNN when the number of samples per class in the dataset is high enough.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3040065</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; bug fixing ; bug report ; Bug triage ; CNN ; Computer bugs ; Datasets ; Deep learning ; ELMo ; Feature extraction ; GloVe ; Machine learning ; Neural networks ; Open source software ; recommending bug fixer ; Recurrent neural networks ; Representations ; Source code ; Support vector machines ; Task analysis ; word embedding ; word representation ; Word2Vec ; Words (language)</subject><ispartof>IEEE access, 2020, Vol.8, p.213729-213747</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3e61487cd5683106655ef0b9fd77d1d0eff04d59935e04702c15d53b7d3a68c13</citedby><cites>FETCH-LOGICAL-c408t-3e61487cd5683106655ef0b9fd77d1d0eff04d59935e04702c15d53b7d3a68c13</cites><orcidid>0000-0003-2257-290X ; 0000-0001-9674-0625 ; 0000-0001-9734-4456 ; 0000-0001-6948-3440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9268164$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zaidi, Syed Farhan Alam</creatorcontrib><creatorcontrib>Awan, Faraz Malik</creatorcontrib><creatorcontrib>Lee, Minsoo</creatorcontrib><creatorcontrib>Woo, Honguk</creatorcontrib><creatorcontrib>Lee, Chan-Gun</creatorcontrib><title>Applying Convolutional Neural Networks With Different Word Representation Techniques to Recommend Bug Fixers</title><title>IEEE access</title><addtitle>Access</addtitle><description>Bug triage processes are intended to assign bug reports to appropriate developers effectively, but they typically become bottlenecks in the development process-especially for large-scale software projects. Recently, several machine learning approaches, including deep learning-based approaches, have been proposed to recommend an appropriate developer automatically by learning past assignment patterns. In this paper, we propose a deep learning-based bug triage technique using a convolutional neural network (CNN) with three different word representation techniques: Word to Vector (Word2Vec), Global Vector (GloVe), and Embeddings from Language Models (ELMo). Experiments were performed on datasets from well-known large-scale open-source projects, such as Eclipse and Mozilla, and top-k accuracy was measured as an evaluation metric. The experimental results suggest that the ELMo-based CNN approach performs best for the bug triage problem. GloVe-based CNN slightly outperforms Word2Vec-based CNN in many cases. Word2Vec-based CNN outperforms GloVe-based CNN when the number of samples per class in the dataset is high enough.</description><subject>Artificial neural networks</subject><subject>bug fixing</subject><subject>bug report</subject><subject>Bug triage</subject><subject>CNN</subject><subject>Computer bugs</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>ELMo</subject><subject>Feature extraction</subject><subject>GloVe</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Open source software</subject><subject>recommending bug fixer</subject><subject>Recurrent neural networks</subject><subject>Representations</subject><subject>Source code</subject><subject>Support vector machines</subject><subject>Task analysis</subject><subject>word embedding</subject><subject>word representation</subject><subject>Word2Vec</subject><subject>Words (language)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1P3DAQhqOqSEWUX8DFUs-7HccfSY7bFAoSaiWg4mg59njxNhundlLg3-MlCNWX8Xy8r-V5iuKMwppSaL5u2vb89nZdQglrBhxAig_FcUlls2KCyY__3T8VpyntIJ86l0R1XPSbceyf_bAlbRj-hX6efBh0T37iHF_D9Bjin0Tu_fRAvnvnMOIwkfsQLbnBMWLKqT6IyB2ah8H_nTGRKeSmCfs9DpZ8m7fkwj9hTJ-LI6f7hKdv8aT4fXF-116urn_9uGo31yvDoZ5WDCXldWWskDWjIKUQ6KBrnK0qSy2gc8CtaBomEHgFpaHCCtZVlmlZG8pOiqvF1wa9U2P0ex2fVdBevRZC3CodJ296VMa5UrtKN8xVnCJ2uqNcSt5RVgKXInt9WbzGGA5_m9QuzDGvKKmSy7qSIATPU2yZMjGkFNG9v0pBHSiphZI6UFJvlLLqbFF5RHxXNKXMdDh7AWg2jmA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zaidi, Syed Farhan Alam</creator><creator>Awan, Faraz Malik</creator><creator>Lee, Minsoo</creator><creator>Woo, Honguk</creator><creator>Lee, Chan-Gun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2257-290X</orcidid><orcidid>https://orcid.org/0000-0001-9674-0625</orcidid><orcidid>https://orcid.org/0000-0001-9734-4456</orcidid><orcidid>https://orcid.org/0000-0001-6948-3440</orcidid></search><sort><creationdate>2020</creationdate><title>Applying Convolutional Neural Networks With Different Word Representation Techniques to Recommend Bug Fixers</title><author>Zaidi, Syed Farhan Alam ; Awan, Faraz Malik ; Lee, Minsoo ; Woo, Honguk ; Lee, Chan-Gun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3e61487cd5683106655ef0b9fd77d1d0eff04d59935e04702c15d53b7d3a68c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>bug fixing</topic><topic>bug report</topic><topic>Bug triage</topic><topic>CNN</topic><topic>Computer bugs</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>ELMo</topic><topic>Feature extraction</topic><topic>GloVe</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Open source software</topic><topic>recommending bug fixer</topic><topic>Recurrent neural networks</topic><topic>Representations</topic><topic>Source code</topic><topic>Support vector machines</topic><topic>Task analysis</topic><topic>word embedding</topic><topic>word representation</topic><topic>Word2Vec</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaidi, Syed Farhan Alam</creatorcontrib><creatorcontrib>Awan, Faraz Malik</creatorcontrib><creatorcontrib>Lee, Minsoo</creatorcontrib><creatorcontrib>Woo, Honguk</creatorcontrib><creatorcontrib>Lee, Chan-Gun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaidi, Syed Farhan Alam</au><au>Awan, Faraz Malik</au><au>Lee, Minsoo</au><au>Woo, Honguk</au><au>Lee, Chan-Gun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying Convolutional Neural Networks With Different Word Representation Techniques to Recommend Bug Fixers</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>213729</spage><epage>213747</epage><pages>213729-213747</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Bug triage processes are intended to assign bug reports to appropriate developers effectively, but they typically become bottlenecks in the development process-especially for large-scale software projects. Recently, several machine learning approaches, including deep learning-based approaches, have been proposed to recommend an appropriate developer automatically by learning past assignment patterns. In this paper, we propose a deep learning-based bug triage technique using a convolutional neural network (CNN) with three different word representation techniques: Word to Vector (Word2Vec), Global Vector (GloVe), and Embeddings from Language Models (ELMo). Experiments were performed on datasets from well-known large-scale open-source projects, such as Eclipse and Mozilla, and top-k accuracy was measured as an evaluation metric. The experimental results suggest that the ELMo-based CNN approach performs best for the bug triage problem. GloVe-based CNN slightly outperforms Word2Vec-based CNN in many cases. Word2Vec-based CNN outperforms GloVe-based CNN when the number of samples per class in the dataset is high enough.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3040065</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2257-290X</orcidid><orcidid>https://orcid.org/0000-0001-9674-0625</orcidid><orcidid>https://orcid.org/0000-0001-9734-4456</orcidid><orcidid>https://orcid.org/0000-0001-6948-3440</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.213729-213747
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_3040065
source IEEE Open Access Journals
subjects Artificial neural networks
bug fixing
bug report
Bug triage
CNN
Computer bugs
Datasets
Deep learning
ELMo
Feature extraction
GloVe
Machine learning
Neural networks
Open source software
recommending bug fixer
Recurrent neural networks
Representations
Source code
Support vector machines
Task analysis
word embedding
word representation
Word2Vec
Words (language)
title Applying Convolutional Neural Networks With Different Word Representation Techniques to Recommend Bug Fixers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20Convolutional%20Neural%20Networks%20With%20Different%20Word%20Representation%20Techniques%20to%20Recommend%20Bug%20Fixers&rft.jtitle=IEEE%20access&rft.au=Zaidi,%20Syed%20Farhan%20Alam&rft.date=2020&rft.volume=8&rft.spage=213729&rft.epage=213747&rft.pages=213729-213747&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3040065&rft_dat=%3Cproquest_cross%3E2468760554%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-3e61487cd5683106655ef0b9fd77d1d0eff04d59935e04702c15d53b7d3a68c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468760554&rft_id=info:pmid/&rft_ieee_id=9268164&rfr_iscdi=true