Loading…

Signaling Overhead Reduction Techniques in Device-to-Device Communications: Paradigm for 5G and Beyond

Device-to-Device (D2D) communications have recently attracted researchers, attention because of their numerous applications in industry verticals. It enables communications among devices without or with the partial involvement of a central system. To initiate a D2D communications device discovery an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.11037-11050
Main Authors: Hayat, Omar, Kaleem, Zeeshan, Zafarullah, Muhammad, Ngah, Razali, Hashim, Siti Zaiton Mohd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Device-to-Device (D2D) communications have recently attracted researchers, attention because of their numerous applications in industry verticals. It enables communications among devices without or with the partial involvement of a central system. To initiate a D2D communications device discovery and radio resource allocation is a critical task when devices have high mobility. Maintaining the quality-of-service and continuous connectivity requires a signaling burden. An efficient mobility management procedure is necessary to discover the neighboring devices in D2D communications systems. The Discovery of a massive number of devices requires an effective radio resource management procedure that causes signaling overhead. In 5G and beyond communication system, two mobility management methods exist; device discovery and beaconing. Since device density and traffic increases exponentially with high mobility, hence device discovery and beaconing increase the signaling overhead and energy consumption in power-limited devices. Thus, signaling overhead research needs much attention in 5G and beyond systems to meet the service requirements like accuracy, latency, and battery life. Therefore, the challenges and the techniques related to signaling overhead in D2D communications are presented.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3050106