Loading…

Design and Analysis of an Data-Driven Intelligent Model for Persistent Organic Pollutants in the Internet of Things Environments

The targeted compounds included Polychlorinated Biphenyls (PCBs), Pesticides (PESTs), Polycyclic Aromatic Hydrocarbons (PAHs) and so on in the Great Lakes Integrated Atmospheric Deposition Network (IADN), which is a platform based on the IoT (Internet of Things) technology to collect environmental p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.13451-13463
Main Authors: Wu, Chunxue, Wang, Cheng, Fan, Qingfeng, Wu, Qiongli, Xu, Sheng, Xiong, Neal N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833
cites cdi_FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833
container_end_page 13463
container_issue
container_start_page 13451
container_title IEEE access
container_volume 9
creator Wu, Chunxue
Wang, Cheng
Fan, Qingfeng
Wu, Qiongli
Xu, Sheng
Xiong, Neal N.
description The targeted compounds included Polychlorinated Biphenyls (PCBs), Pesticides (PESTs), Polycyclic Aromatic Hydrocarbons (PAHs) and so on in the Great Lakes Integrated Atmospheric Deposition Network (IADN), which is a platform based on the IoT (Internet of Things) technology to collect environmental pollutants data. While previous studies usually employed traditional statistical approaches to analyze the IADN results, we performed a complete modeling workflow of the total concentrations of PCBs, PESTs, and PAHs (which is referred to as \sum PCBs, \sum PEST s and \sum PAHs orderly) in 1990-2016 samples by using a machine learning algorithm combined with data-driven research method, which lets the model fit the data, so as to change the model to achieve the effect. The main results of this article are as follows, 1) identifying the spatial and temporal trends of POPs (Persistent Organic Pollutants) in the air of the Great Lakes; 2) An appropriate data-driven intelligent model was constructed for the data at EH (Eagle Harbor) and STP(Sturgeon Point) sampling sites, via which we estimated their \sum PCBs, \sum PESTs, and \sum PAHs in the following 4-5 years, showing the concentrations will continue declining with slight fluctuations; 3) The important role which IoT played in smart environmental protection was pointed out.
doi_str_mv 10.1109/ACCESS.2021.3051505
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3051505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9321329</ieee_id><doaj_id>oai_doaj_org_article_9a7e96c51ee04a6daa60ea3d7dd0a590</doaj_id><sourcerecordid>2480866973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833</originalsourceid><addsrcrecordid>eNpNkUFv3CAQha2qkRql-QW5IPXsLRiD4bja3bYrpUqkJGc0a8YOKwdSYCPl1p9eHEdROcDwNO8bxKuqK0ZXjFH9fb3Z7O7uVg1t2IpTwQQVn6rzhkldc8Hl5__qL9VlSkdaliqS6M6rv1tMbvQEvCVrD9NrcomEodzJFjLU2-he0JO9zzhNbkSfye9gcSJDiOQWY2nPs3gTR_CuJ7dhmk4ZfE7EeZIf8c0aPeaZev_o_JjIzr-4GPxTMaav1dkAU8LL9_Oievixu9_8qq9vfu436-u6b6nKdddgd-BKwaA5V02PSiPnbYctHZDxXuKBKSlFJ7uWwqEvu0XaUqaEpag4v6j2C9cGOJrn6J4gvpoAzrwJIY4GYnb9hEZDh1r2gmEhgLQAkiJw21lLQWhaWN8W1nMMf06YsjmGUyy_l0zTKlreobt5Il-6-hhSijh8TGXUzMmZJTkzJ2fekyuuq8XlEPHDoXnDeKP5PzeglSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480866973</pqid></control><display><type>article</type><title>Design and Analysis of an Data-Driven Intelligent Model for Persistent Organic Pollutants in the Internet of Things Environments</title><source>IEEE Xplore Open Access Journals</source><creator>Wu, Chunxue ; Wang, Cheng ; Fan, Qingfeng ; Wu, Qiongli ; Xu, Sheng ; Xiong, Neal N.</creator><creatorcontrib>Wu, Chunxue ; Wang, Cheng ; Fan, Qingfeng ; Wu, Qiongli ; Xu, Sheng ; Xiong, Neal N.</creatorcontrib><description><![CDATA[The targeted compounds included Polychlorinated Biphenyls (PCBs), Pesticides (PESTs), Polycyclic Aromatic Hydrocarbons (PAHs) and so on in the Great Lakes Integrated Atmospheric Deposition Network (IADN), which is a platform based on the IoT (Internet of Things) technology to collect environmental pollutants data. While previous studies usually employed traditional statistical approaches to analyze the IADN results, we performed a complete modeling workflow of the total concentrations of PCBs, PESTs, and PAHs (which is referred to as <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PCBs, <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PEST s and <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PAHs orderly) in 1990-2016 samples by using a machine learning algorithm combined with data-driven research method, which lets the model fit the data, so as to change the model to achieve the effect. The main results of this article are as follows, 1) identifying the spatial and temporal trends of POPs (Persistent Organic Pollutants) in the air of the Great Lakes; 2) An appropriate data-driven intelligent model was constructed for the data at EH (Eagle Harbor) and STP(Sturgeon Point) sampling sites, via which we estimated their <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PCBs, <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PESTs, and <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PAHs in the following 4-5 years, showing the concentrations will continue declining with slight fluctuations; 3) The important role which IoT played in smart environmental protection was pointed out.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3051505</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Analytical models ; Atmospheric environment ; Atmospheric measurements ; Atmospheric modeling ; Atmospheric models ; Data models ; data-driven ; Environmental protection ; great lakes ; intelligent model ; Internet of Things ; Lakes ; Machine learning ; PCB ; persistent organic pollutants ; Pesticides ; Pests ; Pollutants ; Polychlorinated biphenyls ; Polycyclic aromatic hydrocarbons ; Statistical methods ; Workflow</subject><ispartof>IEEE access, 2021, Vol.9, p.13451-13463</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833</citedby><cites>FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833</cites><orcidid>0000-0001-8498-3881 ; 0000-0003-4212-2076 ; 0000-0002-0394-4635 ; 0000-0002-9667-8451 ; 0000-0002-9361-6538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9321329$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wu, Chunxue</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Fan, Qingfeng</creatorcontrib><creatorcontrib>Wu, Qiongli</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Xiong, Neal N.</creatorcontrib><title>Design and Analysis of an Data-Driven Intelligent Model for Persistent Organic Pollutants in the Internet of Things Environments</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[The targeted compounds included Polychlorinated Biphenyls (PCBs), Pesticides (PESTs), Polycyclic Aromatic Hydrocarbons (PAHs) and so on in the Great Lakes Integrated Atmospheric Deposition Network (IADN), which is a platform based on the IoT (Internet of Things) technology to collect environmental pollutants data. While previous studies usually employed traditional statistical approaches to analyze the IADN results, we performed a complete modeling workflow of the total concentrations of PCBs, PESTs, and PAHs (which is referred to as <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PCBs, <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PEST s and <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PAHs orderly) in 1990-2016 samples by using a machine learning algorithm combined with data-driven research method, which lets the model fit the data, so as to change the model to achieve the effect. The main results of this article are as follows, 1) identifying the spatial and temporal trends of POPs (Persistent Organic Pollutants) in the air of the Great Lakes; 2) An appropriate data-driven intelligent model was constructed for the data at EH (Eagle Harbor) and STP(Sturgeon Point) sampling sites, via which we estimated their <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PCBs, <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PESTs, and <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PAHs in the following 4-5 years, showing the concentrations will continue declining with slight fluctuations; 3) The important role which IoT played in smart environmental protection was pointed out.]]></description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Atmospheric environment</subject><subject>Atmospheric measurements</subject><subject>Atmospheric modeling</subject><subject>Atmospheric models</subject><subject>Data models</subject><subject>data-driven</subject><subject>Environmental protection</subject><subject>great lakes</subject><subject>intelligent model</subject><subject>Internet of Things</subject><subject>Lakes</subject><subject>Machine learning</subject><subject>PCB</subject><subject>persistent organic pollutants</subject><subject>Pesticides</subject><subject>Pests</subject><subject>Pollutants</subject><subject>Polychlorinated biphenyls</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Statistical methods</subject><subject>Workflow</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFv3CAQha2qkRql-QW5IPXsLRiD4bja3bYrpUqkJGc0a8YOKwdSYCPl1p9eHEdROcDwNO8bxKuqK0ZXjFH9fb3Z7O7uVg1t2IpTwQQVn6rzhkldc8Hl5__qL9VlSkdaliqS6M6rv1tMbvQEvCVrD9NrcomEodzJFjLU2-he0JO9zzhNbkSfye9gcSJDiOQWY2nPs3gTR_CuJ7dhmk4ZfE7EeZIf8c0aPeaZev_o_JjIzr-4GPxTMaav1dkAU8LL9_Oievixu9_8qq9vfu436-u6b6nKdddgd-BKwaA5V02PSiPnbYctHZDxXuKBKSlFJ7uWwqEvu0XaUqaEpag4v6j2C9cGOJrn6J4gvpoAzrwJIY4GYnb9hEZDh1r2gmEhgLQAkiJw21lLQWhaWN8W1nMMf06YsjmGUyy_l0zTKlreobt5Il-6-hhSijh8TGXUzMmZJTkzJ2fekyuuq8XlEPHDoXnDeKP5PzeglSA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wu, Chunxue</creator><creator>Wang, Cheng</creator><creator>Fan, Qingfeng</creator><creator>Wu, Qiongli</creator><creator>Xu, Sheng</creator><creator>Xiong, Neal N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8498-3881</orcidid><orcidid>https://orcid.org/0000-0003-4212-2076</orcidid><orcidid>https://orcid.org/0000-0002-0394-4635</orcidid><orcidid>https://orcid.org/0000-0002-9667-8451</orcidid><orcidid>https://orcid.org/0000-0002-9361-6538</orcidid></search><sort><creationdate>2021</creationdate><title>Design and Analysis of an Data-Driven Intelligent Model for Persistent Organic Pollutants in the Internet of Things Environments</title><author>Wu, Chunxue ; Wang, Cheng ; Fan, Qingfeng ; Wu, Qiongli ; Xu, Sheng ; Xiong, Neal N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Atmospheric environment</topic><topic>Atmospheric measurements</topic><topic>Atmospheric modeling</topic><topic>Atmospheric models</topic><topic>Data models</topic><topic>data-driven</topic><topic>Environmental protection</topic><topic>great lakes</topic><topic>intelligent model</topic><topic>Internet of Things</topic><topic>Lakes</topic><topic>Machine learning</topic><topic>PCB</topic><topic>persistent organic pollutants</topic><topic>Pesticides</topic><topic>Pests</topic><topic>Pollutants</topic><topic>Polychlorinated biphenyls</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Statistical methods</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chunxue</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Fan, Qingfeng</creatorcontrib><creatorcontrib>Wu, Qiongli</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Xiong, Neal N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chunxue</au><au>Wang, Cheng</au><au>Fan, Qingfeng</au><au>Wu, Qiongli</au><au>Xu, Sheng</au><au>Xiong, Neal N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis of an Data-Driven Intelligent Model for Persistent Organic Pollutants in the Internet of Things Environments</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>13451</spage><epage>13463</epage><pages>13451-13463</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[The targeted compounds included Polychlorinated Biphenyls (PCBs), Pesticides (PESTs), Polycyclic Aromatic Hydrocarbons (PAHs) and so on in the Great Lakes Integrated Atmospheric Deposition Network (IADN), which is a platform based on the IoT (Internet of Things) technology to collect environmental pollutants data. While previous studies usually employed traditional statistical approaches to analyze the IADN results, we performed a complete modeling workflow of the total concentrations of PCBs, PESTs, and PAHs (which is referred to as <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PCBs, <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PEST s and <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PAHs orderly) in 1990-2016 samples by using a machine learning algorithm combined with data-driven research method, which lets the model fit the data, so as to change the model to achieve the effect. The main results of this article are as follows, 1) identifying the spatial and temporal trends of POPs (Persistent Organic Pollutants) in the air of the Great Lakes; 2) An appropriate data-driven intelligent model was constructed for the data at EH (Eagle Harbor) and STP(Sturgeon Point) sampling sites, via which we estimated their <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PCBs, <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PESTs, and <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PAHs in the following 4-5 years, showing the concentrations will continue declining with slight fluctuations; 3) The important role which IoT played in smart environmental protection was pointed out.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3051505</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8498-3881</orcidid><orcidid>https://orcid.org/0000-0003-4212-2076</orcidid><orcidid>https://orcid.org/0000-0002-0394-4635</orcidid><orcidid>https://orcid.org/0000-0002-9667-8451</orcidid><orcidid>https://orcid.org/0000-0002-9361-6538</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.13451-13463
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3051505
source IEEE Xplore Open Access Journals
subjects Algorithms
Analytical models
Atmospheric environment
Atmospheric measurements
Atmospheric modeling
Atmospheric models
Data models
data-driven
Environmental protection
great lakes
intelligent model
Internet of Things
Lakes
Machine learning
PCB
persistent organic pollutants
Pesticides
Pests
Pollutants
Polychlorinated biphenyls
Polycyclic aromatic hydrocarbons
Statistical methods
Workflow
title Design and Analysis of an Data-Driven Intelligent Model for Persistent Organic Pollutants in the Internet of Things Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20of%20an%20Data-Driven%20Intelligent%20Model%20for%20Persistent%20Organic%20Pollutants%20in%20the%20Internet%20of%20Things%20Environments&rft.jtitle=IEEE%20access&rft.au=Wu,%20Chunxue&rft.date=2021&rft.volume=9&rft.spage=13451&rft.epage=13463&rft.pages=13451-13463&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3051505&rft_dat=%3Cproquest_cross%3E2480866973%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480866973&rft_id=info:pmid/&rft_ieee_id=9321329&rfr_iscdi=true