Loading…
Design and Analysis of an Data-Driven Intelligent Model for Persistent Organic Pollutants in the Internet of Things Environments
The targeted compounds included Polychlorinated Biphenyls (PCBs), Pesticides (PESTs), Polycyclic Aromatic Hydrocarbons (PAHs) and so on in the Great Lakes Integrated Atmospheric Deposition Network (IADN), which is a platform based on the IoT (Internet of Things) technology to collect environmental p...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.13451-13463 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833 |
container_end_page | 13463 |
container_issue | |
container_start_page | 13451 |
container_title | IEEE access |
container_volume | 9 |
creator | Wu, Chunxue Wang, Cheng Fan, Qingfeng Wu, Qiongli Xu, Sheng Xiong, Neal N. |
description | The targeted compounds included Polychlorinated Biphenyls (PCBs), Pesticides (PESTs), Polycyclic Aromatic Hydrocarbons (PAHs) and so on in the Great Lakes Integrated Atmospheric Deposition Network (IADN), which is a platform based on the IoT (Internet of Things) technology to collect environmental pollutants data. While previous studies usually employed traditional statistical approaches to analyze the IADN results, we performed a complete modeling workflow of the total concentrations of PCBs, PESTs, and PAHs (which is referred to as \sum PCBs, \sum PEST s and \sum PAHs orderly) in 1990-2016 samples by using a machine learning algorithm combined with data-driven research method, which lets the model fit the data, so as to change the model to achieve the effect. The main results of this article are as follows, 1) identifying the spatial and temporal trends of POPs (Persistent Organic Pollutants) in the air of the Great Lakes; 2) An appropriate data-driven intelligent model was constructed for the data at EH (Eagle Harbor) and STP(Sturgeon Point) sampling sites, via which we estimated their \sum PCBs, \sum PESTs, and \sum PAHs in the following 4-5 years, showing the concentrations will continue declining with slight fluctuations; 3) The important role which IoT played in smart environmental protection was pointed out. |
doi_str_mv | 10.1109/ACCESS.2021.3051505 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3051505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9321329</ieee_id><doaj_id>oai_doaj_org_article_9a7e96c51ee04a6daa60ea3d7dd0a590</doaj_id><sourcerecordid>2480866973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833</originalsourceid><addsrcrecordid>eNpNkUFv3CAQha2qkRql-QW5IPXsLRiD4bja3bYrpUqkJGc0a8YOKwdSYCPl1p9eHEdROcDwNO8bxKuqK0ZXjFH9fb3Z7O7uVg1t2IpTwQQVn6rzhkldc8Hl5__qL9VlSkdaliqS6M6rv1tMbvQEvCVrD9NrcomEodzJFjLU2-he0JO9zzhNbkSfye9gcSJDiOQWY2nPs3gTR_CuJ7dhmk4ZfE7EeZIf8c0aPeaZev_o_JjIzr-4GPxTMaav1dkAU8LL9_Oievixu9_8qq9vfu436-u6b6nKdddgd-BKwaA5V02PSiPnbYctHZDxXuKBKSlFJ7uWwqEvu0XaUqaEpag4v6j2C9cGOJrn6J4gvpoAzrwJIY4GYnb9hEZDh1r2gmEhgLQAkiJw21lLQWhaWN8W1nMMf06YsjmGUyy_l0zTKlreobt5Il-6-hhSijh8TGXUzMmZJTkzJ2fekyuuq8XlEPHDoXnDeKP5PzeglSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480866973</pqid></control><display><type>article</type><title>Design and Analysis of an Data-Driven Intelligent Model for Persistent Organic Pollutants in the Internet of Things Environments</title><source>IEEE Xplore Open Access Journals</source><creator>Wu, Chunxue ; Wang, Cheng ; Fan, Qingfeng ; Wu, Qiongli ; Xu, Sheng ; Xiong, Neal N.</creator><creatorcontrib>Wu, Chunxue ; Wang, Cheng ; Fan, Qingfeng ; Wu, Qiongli ; Xu, Sheng ; Xiong, Neal N.</creatorcontrib><description><![CDATA[The targeted compounds included Polychlorinated Biphenyls (PCBs), Pesticides (PESTs), Polycyclic Aromatic Hydrocarbons (PAHs) and so on in the Great Lakes Integrated Atmospheric Deposition Network (IADN), which is a platform based on the IoT (Internet of Things) technology to collect environmental pollutants data. While previous studies usually employed traditional statistical approaches to analyze the IADN results, we performed a complete modeling workflow of the total concentrations of PCBs, PESTs, and PAHs (which is referred to as <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PCBs, <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PEST s and <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PAHs orderly) in 1990-2016 samples by using a machine learning algorithm combined with data-driven research method, which lets the model fit the data, so as to change the model to achieve the effect. The main results of this article are as follows, 1) identifying the spatial and temporal trends of POPs (Persistent Organic Pollutants) in the air of the Great Lakes; 2) An appropriate data-driven intelligent model was constructed for the data at EH (Eagle Harbor) and STP(Sturgeon Point) sampling sites, via which we estimated their <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PCBs, <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PESTs, and <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PAHs in the following 4-5 years, showing the concentrations will continue declining with slight fluctuations; 3) The important role which IoT played in smart environmental protection was pointed out.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3051505</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Analytical models ; Atmospheric environment ; Atmospheric measurements ; Atmospheric modeling ; Atmospheric models ; Data models ; data-driven ; Environmental protection ; great lakes ; intelligent model ; Internet of Things ; Lakes ; Machine learning ; PCB ; persistent organic pollutants ; Pesticides ; Pests ; Pollutants ; Polychlorinated biphenyls ; Polycyclic aromatic hydrocarbons ; Statistical methods ; Workflow</subject><ispartof>IEEE access, 2021, Vol.9, p.13451-13463</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833</citedby><cites>FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833</cites><orcidid>0000-0001-8498-3881 ; 0000-0003-4212-2076 ; 0000-0002-0394-4635 ; 0000-0002-9667-8451 ; 0000-0002-9361-6538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9321329$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wu, Chunxue</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Fan, Qingfeng</creatorcontrib><creatorcontrib>Wu, Qiongli</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Xiong, Neal N.</creatorcontrib><title>Design and Analysis of an Data-Driven Intelligent Model for Persistent Organic Pollutants in the Internet of Things Environments</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[The targeted compounds included Polychlorinated Biphenyls (PCBs), Pesticides (PESTs), Polycyclic Aromatic Hydrocarbons (PAHs) and so on in the Great Lakes Integrated Atmospheric Deposition Network (IADN), which is a platform based on the IoT (Internet of Things) technology to collect environmental pollutants data. While previous studies usually employed traditional statistical approaches to analyze the IADN results, we performed a complete modeling workflow of the total concentrations of PCBs, PESTs, and PAHs (which is referred to as <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PCBs, <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PEST s and <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PAHs orderly) in 1990-2016 samples by using a machine learning algorithm combined with data-driven research method, which lets the model fit the data, so as to change the model to achieve the effect. The main results of this article are as follows, 1) identifying the spatial and temporal trends of POPs (Persistent Organic Pollutants) in the air of the Great Lakes; 2) An appropriate data-driven intelligent model was constructed for the data at EH (Eagle Harbor) and STP(Sturgeon Point) sampling sites, via which we estimated their <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PCBs, <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PESTs, and <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PAHs in the following 4-5 years, showing the concentrations will continue declining with slight fluctuations; 3) The important role which IoT played in smart environmental protection was pointed out.]]></description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Atmospheric environment</subject><subject>Atmospheric measurements</subject><subject>Atmospheric modeling</subject><subject>Atmospheric models</subject><subject>Data models</subject><subject>data-driven</subject><subject>Environmental protection</subject><subject>great lakes</subject><subject>intelligent model</subject><subject>Internet of Things</subject><subject>Lakes</subject><subject>Machine learning</subject><subject>PCB</subject><subject>persistent organic pollutants</subject><subject>Pesticides</subject><subject>Pests</subject><subject>Pollutants</subject><subject>Polychlorinated biphenyls</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Statistical methods</subject><subject>Workflow</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFv3CAQha2qkRql-QW5IPXsLRiD4bja3bYrpUqkJGc0a8YOKwdSYCPl1p9eHEdROcDwNO8bxKuqK0ZXjFH9fb3Z7O7uVg1t2IpTwQQVn6rzhkldc8Hl5__qL9VlSkdaliqS6M6rv1tMbvQEvCVrD9NrcomEodzJFjLU2-he0JO9zzhNbkSfye9gcSJDiOQWY2nPs3gTR_CuJ7dhmk4ZfE7EeZIf8c0aPeaZev_o_JjIzr-4GPxTMaav1dkAU8LL9_Oievixu9_8qq9vfu436-u6b6nKdddgd-BKwaA5V02PSiPnbYctHZDxXuKBKSlFJ7uWwqEvu0XaUqaEpag4v6j2C9cGOJrn6J4gvpoAzrwJIY4GYnb9hEZDh1r2gmEhgLQAkiJw21lLQWhaWN8W1nMMf06YsjmGUyy_l0zTKlreobt5Il-6-hhSijh8TGXUzMmZJTkzJ2fekyuuq8XlEPHDoXnDeKP5PzeglSA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wu, Chunxue</creator><creator>Wang, Cheng</creator><creator>Fan, Qingfeng</creator><creator>Wu, Qiongli</creator><creator>Xu, Sheng</creator><creator>Xiong, Neal N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8498-3881</orcidid><orcidid>https://orcid.org/0000-0003-4212-2076</orcidid><orcidid>https://orcid.org/0000-0002-0394-4635</orcidid><orcidid>https://orcid.org/0000-0002-9667-8451</orcidid><orcidid>https://orcid.org/0000-0002-9361-6538</orcidid></search><sort><creationdate>2021</creationdate><title>Design and Analysis of an Data-Driven Intelligent Model for Persistent Organic Pollutants in the Internet of Things Environments</title><author>Wu, Chunxue ; Wang, Cheng ; Fan, Qingfeng ; Wu, Qiongli ; Xu, Sheng ; Xiong, Neal N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Atmospheric environment</topic><topic>Atmospheric measurements</topic><topic>Atmospheric modeling</topic><topic>Atmospheric models</topic><topic>Data models</topic><topic>data-driven</topic><topic>Environmental protection</topic><topic>great lakes</topic><topic>intelligent model</topic><topic>Internet of Things</topic><topic>Lakes</topic><topic>Machine learning</topic><topic>PCB</topic><topic>persistent organic pollutants</topic><topic>Pesticides</topic><topic>Pests</topic><topic>Pollutants</topic><topic>Polychlorinated biphenyls</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Statistical methods</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chunxue</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Fan, Qingfeng</creatorcontrib><creatorcontrib>Wu, Qiongli</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Xiong, Neal N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chunxue</au><au>Wang, Cheng</au><au>Fan, Qingfeng</au><au>Wu, Qiongli</au><au>Xu, Sheng</au><au>Xiong, Neal N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis of an Data-Driven Intelligent Model for Persistent Organic Pollutants in the Internet of Things Environments</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>13451</spage><epage>13463</epage><pages>13451-13463</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[The targeted compounds included Polychlorinated Biphenyls (PCBs), Pesticides (PESTs), Polycyclic Aromatic Hydrocarbons (PAHs) and so on in the Great Lakes Integrated Atmospheric Deposition Network (IADN), which is a platform based on the IoT (Internet of Things) technology to collect environmental pollutants data. While previous studies usually employed traditional statistical approaches to analyze the IADN results, we performed a complete modeling workflow of the total concentrations of PCBs, PESTs, and PAHs (which is referred to as <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PCBs, <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PEST s and <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PAHs orderly) in 1990-2016 samples by using a machine learning algorithm combined with data-driven research method, which lets the model fit the data, so as to change the model to achieve the effect. The main results of this article are as follows, 1) identifying the spatial and temporal trends of POPs (Persistent Organic Pollutants) in the air of the Great Lakes; 2) An appropriate data-driven intelligent model was constructed for the data at EH (Eagle Harbor) and STP(Sturgeon Point) sampling sites, via which we estimated their <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PCBs, <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PESTs, and <inline-formula> <tex-math notation="LaTeX">\sum </tex-math></inline-formula> PAHs in the following 4-5 years, showing the concentrations will continue declining with slight fluctuations; 3) The important role which IoT played in smart environmental protection was pointed out.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3051505</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8498-3881</orcidid><orcidid>https://orcid.org/0000-0003-4212-2076</orcidid><orcidid>https://orcid.org/0000-0002-0394-4635</orcidid><orcidid>https://orcid.org/0000-0002-9667-8451</orcidid><orcidid>https://orcid.org/0000-0002-9361-6538</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.13451-13463 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3051505 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Analytical models Atmospheric environment Atmospheric measurements Atmospheric modeling Atmospheric models Data models data-driven Environmental protection great lakes intelligent model Internet of Things Lakes Machine learning PCB persistent organic pollutants Pesticides Pests Pollutants Polychlorinated biphenyls Polycyclic aromatic hydrocarbons Statistical methods Workflow |
title | Design and Analysis of an Data-Driven Intelligent Model for Persistent Organic Pollutants in the Internet of Things Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20of%20an%20Data-Driven%20Intelligent%20Model%20for%20Persistent%20Organic%20Pollutants%20in%20the%20Internet%20of%20Things%20Environments&rft.jtitle=IEEE%20access&rft.au=Wu,%20Chunxue&rft.date=2021&rft.volume=9&rft.spage=13451&rft.epage=13463&rft.pages=13451-13463&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3051505&rft_dat=%3Cproquest_cross%3E2480866973%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-72e7b388af93382ce89e3347e40fe13c6eb1866576740abc740de040185d0e833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480866973&rft_id=info:pmid/&rft_ieee_id=9321329&rfr_iscdi=true |