Loading…
A Low-Power Tunable Frequency Selective Surface for Multiplexed Remote Sensing
In this interdisciplinary work, a low-power varactor-tunable frequency selective surface is presented for use with a multiplexed remote sensor system. Combined with a low power sensor and control system, voltage biasing of the proposed frequency selective surface panel can be used to modulate the ce...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.58478-58486 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this interdisciplinary work, a low-power varactor-tunable frequency selective surface is presented for use with a multiplexed remote sensor system. Combined with a low power sensor and control system, voltage biasing of the proposed frequency selective surface panel can be used to modulate the center frequency of a reflection peak, which in turn may be detected by remote interrogation through a radar system. The control board and frequency selective surface were found to draw only 200~\mu \text{A} of current during typical operation from two 3V CR2032 button batteries, enabling continuous operation for weeks at a time (even longer if operated in wake-up mode) when used in conjunction with a suitably low power sensor. Centered at 3 GHz, the backscatter peak can be modulated across a range of 200 MHz, and the combined system was shown to successfully differentiate between various concentrations of ammonia under test conditions. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3070715 |