Loading…
Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification
In this paper, a spectral-spatial active learning (AL) method is proposed based on an up-to-date unlabeled samples sampling strategy concentrated on the structure density supported by breaking ties. The proposed sampling criterion in AL is used for hyperspectral image classification, which involves...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.61793-61806 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73 |
container_end_page | 61806 |
container_issue | |
container_start_page | 61793 |
container_title | IEEE access |
container_volume | 9 |
creator | Li, Qianming Zheng, Bohong Yang, Yusheng |
description | In this paper, a spectral-spatial active learning (AL) method is proposed based on an up-to-date unlabeled samples sampling strategy concentrated on the structure density supported by breaking ties. The proposed sampling criterion in AL is used for hyperspectral image classification, which involves several steps: First, superpixel segmentation algorithm is conducted on the HSI to cluster pixels with similar spectral-spatial signature into the same superpixel block. Then, density peak clustering technique is performed on the each superpixel block to obtain structure density of the pixels. Meanwhile, probability-based classifier is employed to achieve the probability distributions of pixel. Next, breaking ties (BT) score of each pixel can be calculated by exploiting the probabilities. Additionally, a fusion mechanism is introduced to select the unlabeled samples with representativeness and informativeness advantages by employing the BT-assisted structure density (SD sampling criterion) of each pixel. Finally, the samples with manual labeled class labels are put into the training set to retrain the classifier. Experimental results manifest that the proposed SD-based sampling criterion in active learning can significantly improve the classification accuracy in few labor costs. Thus, it has certain feasibility in practical application. |
doi_str_mv | 10.1109/ACCESS.2021.3074405 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3074405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9409072</ieee_id><doaj_id>oai_doaj_org_article_4ff709b8c41e4ba3a69dd63320a31547</doaj_id><sourcerecordid>2519083945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73</originalsourceid><addsrcrecordid>eNpNkU9Lw0AQxYMoWGo_QS8Bz6n7L5vsscRqCwUPUfS2bDazdUtM4u5W6Lc3NaU4lxke834z8KJojtECYyQelkWxKssFQQQvKMoYQ-lVNCGYi4SmlF__m2-jmfd7NFQ-SGk2iT7KHnRwqknKXgWrmnipg_2BeAvKtbbdxe82fMZlcAcdDg7iR2i9DcfYdC5eH3tw_gyIi0Z5b43VA6dr76IboxoPs3OfRm9Pq9dinWxfnjfFcptohvKQ4AwIJxlHphJEGIYNRQYJmtZcYJZTZhQ1FRCBTZYajjGvQdSakVyw2uiMTqPNyK07tZe9s1_KHWWnrPwTOreTygWrG5DMmAyJKtcMA6sUVVzUNaeUIEVxyk6s-5HVu-77AD7IfXdw7fC-JCkWKKeCpcMWHbe067x3YC5XMZKnROSYiDwlIs-JDK756LIAcHEIhgTKCP0FbWSGuA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519083945</pqid></control><display><type>article</type><title>Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification</title><source>IEEE Xplore Open Access Journals</source><creator>Li, Qianming ; Zheng, Bohong ; Yang, Yusheng</creator><creatorcontrib>Li, Qianming ; Zheng, Bohong ; Yang, Yusheng</creatorcontrib><description>In this paper, a spectral-spatial active learning (AL) method is proposed based on an up-to-date unlabeled samples sampling strategy concentrated on the structure density supported by breaking ties. The proposed sampling criterion in AL is used for hyperspectral image classification, which involves several steps: First, superpixel segmentation algorithm is conducted on the HSI to cluster pixels with similar spectral-spatial signature into the same superpixel block. Then, density peak clustering technique is performed on the each superpixel block to obtain structure density of the pixels. Meanwhile, probability-based classifier is employed to achieve the probability distributions of pixel. Next, breaking ties (BT) score of each pixel can be calculated by exploiting the probabilities. Additionally, a fusion mechanism is introduced to select the unlabeled samples with representativeness and informativeness advantages by employing the BT-assisted structure density (SD sampling criterion) of each pixel. Finally, the samples with manual labeled class labels are put into the training set to retrain the classifier. Experimental results manifest that the proposed SD-based sampling criterion in active learning can significantly improve the classification accuracy in few labor costs. Thus, it has certain feasibility in practical application.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3074405</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active learning ; Algorithms ; breaking ties ; Classifiers ; Clustering ; Clustering algorithms ; Criteria ; Density ; Erbium ; Hyperspectral imagery ; Hyperspectral imaging ; Image classification ; Image segmentation ; Learning ; Pixels ; Probability distribution ; Sampling ; sampling criterion ; Spectra ; structure density ; Three-dimensional displays ; Training ; Uncertainty</subject><ispartof>IEEE access, 2021, Vol.9, p.61793-61806</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73</citedby><cites>FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73</cites><orcidid>0000-0001-9293-9629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9409072$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Qianming</creatorcontrib><creatorcontrib>Zheng, Bohong</creatorcontrib><creatorcontrib>Yang, Yusheng</creatorcontrib><title>Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, a spectral-spatial active learning (AL) method is proposed based on an up-to-date unlabeled samples sampling strategy concentrated on the structure density supported by breaking ties. The proposed sampling criterion in AL is used for hyperspectral image classification, which involves several steps: First, superpixel segmentation algorithm is conducted on the HSI to cluster pixels with similar spectral-spatial signature into the same superpixel block. Then, density peak clustering technique is performed on the each superpixel block to obtain structure density of the pixels. Meanwhile, probability-based classifier is employed to achieve the probability distributions of pixel. Next, breaking ties (BT) score of each pixel can be calculated by exploiting the probabilities. Additionally, a fusion mechanism is introduced to select the unlabeled samples with representativeness and informativeness advantages by employing the BT-assisted structure density (SD sampling criterion) of each pixel. Finally, the samples with manual labeled class labels are put into the training set to retrain the classifier. Experimental results manifest that the proposed SD-based sampling criterion in active learning can significantly improve the classification accuracy in few labor costs. Thus, it has certain feasibility in practical application.</description><subject>Active learning</subject><subject>Algorithms</subject><subject>breaking ties</subject><subject>Classifiers</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Criteria</subject><subject>Density</subject><subject>Erbium</subject><subject>Hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>Pixels</subject><subject>Probability distribution</subject><subject>Sampling</subject><subject>sampling criterion</subject><subject>Spectra</subject><subject>structure density</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9Lw0AQxYMoWGo_QS8Bz6n7L5vsscRqCwUPUfS2bDazdUtM4u5W6Lc3NaU4lxke834z8KJojtECYyQelkWxKssFQQQvKMoYQ-lVNCGYi4SmlF__m2-jmfd7NFQ-SGk2iT7KHnRwqknKXgWrmnipg_2BeAvKtbbdxe82fMZlcAcdDg7iR2i9DcfYdC5eH3tw_gyIi0Z5b43VA6dr76IboxoPs3OfRm9Pq9dinWxfnjfFcptohvKQ4AwIJxlHphJEGIYNRQYJmtZcYJZTZhQ1FRCBTZYajjGvQdSakVyw2uiMTqPNyK07tZe9s1_KHWWnrPwTOreTygWrG5DMmAyJKtcMA6sUVVzUNaeUIEVxyk6s-5HVu-77AD7IfXdw7fC-JCkWKKeCpcMWHbe067x3YC5XMZKnROSYiDwlIs-JDK756LIAcHEIhgTKCP0FbWSGuA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Qianming</creator><creator>Zheng, Bohong</creator><creator>Yang, Yusheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9293-9629</orcidid></search><sort><creationdate>2021</creationdate><title>Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification</title><author>Li, Qianming ; Zheng, Bohong ; Yang, Yusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active learning</topic><topic>Algorithms</topic><topic>breaking ties</topic><topic>Classifiers</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Criteria</topic><topic>Density</topic><topic>Erbium</topic><topic>Hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>Pixels</topic><topic>Probability distribution</topic><topic>Sampling</topic><topic>sampling criterion</topic><topic>Spectra</topic><topic>structure density</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qianming</creatorcontrib><creatorcontrib>Zheng, Bohong</creatorcontrib><creatorcontrib>Yang, Yusheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qianming</au><au>Zheng, Bohong</au><au>Yang, Yusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>61793</spage><epage>61806</epage><pages>61793-61806</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, a spectral-spatial active learning (AL) method is proposed based on an up-to-date unlabeled samples sampling strategy concentrated on the structure density supported by breaking ties. The proposed sampling criterion in AL is used for hyperspectral image classification, which involves several steps: First, superpixel segmentation algorithm is conducted on the HSI to cluster pixels with similar spectral-spatial signature into the same superpixel block. Then, density peak clustering technique is performed on the each superpixel block to obtain structure density of the pixels. Meanwhile, probability-based classifier is employed to achieve the probability distributions of pixel. Next, breaking ties (BT) score of each pixel can be calculated by exploiting the probabilities. Additionally, a fusion mechanism is introduced to select the unlabeled samples with representativeness and informativeness advantages by employing the BT-assisted structure density (SD sampling criterion) of each pixel. Finally, the samples with manual labeled class labels are put into the training set to retrain the classifier. Experimental results manifest that the proposed SD-based sampling criterion in active learning can significantly improve the classification accuracy in few labor costs. Thus, it has certain feasibility in practical application.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3074405</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9293-9629</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.61793-61806 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3074405 |
source | IEEE Xplore Open Access Journals |
subjects | Active learning Algorithms breaking ties Classifiers Clustering Clustering algorithms Criteria Density Erbium Hyperspectral imagery Hyperspectral imaging Image classification Image segmentation Learning Pixels Probability distribution Sampling sampling criterion Spectra structure density Three-dimensional displays Training Uncertainty |
title | Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral-Spatial%20Active%20Learning%20With%20Structure%20Density%20for%20Hyperspectral%20Classification&rft.jtitle=IEEE%20access&rft.au=Li,%20Qianming&rft.date=2021&rft.volume=9&rft.spage=61793&rft.epage=61806&rft.pages=61793-61806&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3074405&rft_dat=%3Cproquest_cross%3E2519083945%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2519083945&rft_id=info:pmid/&rft_ieee_id=9409072&rfr_iscdi=true |