Loading…

Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification

In this paper, a spectral-spatial active learning (AL) method is proposed based on an up-to-date unlabeled samples sampling strategy concentrated on the structure density supported by breaking ties. The proposed sampling criterion in AL is used for hyperspectral image classification, which involves...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.61793-61806
Main Authors: Li, Qianming, Zheng, Bohong, Yang, Yusheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73
cites cdi_FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73
container_end_page 61806
container_issue
container_start_page 61793
container_title IEEE access
container_volume 9
creator Li, Qianming
Zheng, Bohong
Yang, Yusheng
description In this paper, a spectral-spatial active learning (AL) method is proposed based on an up-to-date unlabeled samples sampling strategy concentrated on the structure density supported by breaking ties. The proposed sampling criterion in AL is used for hyperspectral image classification, which involves several steps: First, superpixel segmentation algorithm is conducted on the HSI to cluster pixels with similar spectral-spatial signature into the same superpixel block. Then, density peak clustering technique is performed on the each superpixel block to obtain structure density of the pixels. Meanwhile, probability-based classifier is employed to achieve the probability distributions of pixel. Next, breaking ties (BT) score of each pixel can be calculated by exploiting the probabilities. Additionally, a fusion mechanism is introduced to select the unlabeled samples with representativeness and informativeness advantages by employing the BT-assisted structure density (SD sampling criterion) of each pixel. Finally, the samples with manual labeled class labels are put into the training set to retrain the classifier. Experimental results manifest that the proposed SD-based sampling criterion in active learning can significantly improve the classification accuracy in few labor costs. Thus, it has certain feasibility in practical application.
doi_str_mv 10.1109/ACCESS.2021.3074405
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3074405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9409072</ieee_id><doaj_id>oai_doaj_org_article_4ff709b8c41e4ba3a69dd63320a31547</doaj_id><sourcerecordid>2519083945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73</originalsourceid><addsrcrecordid>eNpNkU9Lw0AQxYMoWGo_QS8Bz6n7L5vsscRqCwUPUfS2bDazdUtM4u5W6Lc3NaU4lxke834z8KJojtECYyQelkWxKssFQQQvKMoYQ-lVNCGYi4SmlF__m2-jmfd7NFQ-SGk2iT7KHnRwqknKXgWrmnipg_2BeAvKtbbdxe82fMZlcAcdDg7iR2i9DcfYdC5eH3tw_gyIi0Z5b43VA6dr76IboxoPs3OfRm9Pq9dinWxfnjfFcptohvKQ4AwIJxlHphJEGIYNRQYJmtZcYJZTZhQ1FRCBTZYajjGvQdSakVyw2uiMTqPNyK07tZe9s1_KHWWnrPwTOreTygWrG5DMmAyJKtcMA6sUVVzUNaeUIEVxyk6s-5HVu-77AD7IfXdw7fC-JCkWKKeCpcMWHbe067x3YC5XMZKnROSYiDwlIs-JDK756LIAcHEIhgTKCP0FbWSGuA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519083945</pqid></control><display><type>article</type><title>Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification</title><source>IEEE Xplore Open Access Journals</source><creator>Li, Qianming ; Zheng, Bohong ; Yang, Yusheng</creator><creatorcontrib>Li, Qianming ; Zheng, Bohong ; Yang, Yusheng</creatorcontrib><description>In this paper, a spectral-spatial active learning (AL) method is proposed based on an up-to-date unlabeled samples sampling strategy concentrated on the structure density supported by breaking ties. The proposed sampling criterion in AL is used for hyperspectral image classification, which involves several steps: First, superpixel segmentation algorithm is conducted on the HSI to cluster pixels with similar spectral-spatial signature into the same superpixel block. Then, density peak clustering technique is performed on the each superpixel block to obtain structure density of the pixels. Meanwhile, probability-based classifier is employed to achieve the probability distributions of pixel. Next, breaking ties (BT) score of each pixel can be calculated by exploiting the probabilities. Additionally, a fusion mechanism is introduced to select the unlabeled samples with representativeness and informativeness advantages by employing the BT-assisted structure density (SD sampling criterion) of each pixel. Finally, the samples with manual labeled class labels are put into the training set to retrain the classifier. Experimental results manifest that the proposed SD-based sampling criterion in active learning can significantly improve the classification accuracy in few labor costs. Thus, it has certain feasibility in practical application.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3074405</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active learning ; Algorithms ; breaking ties ; Classifiers ; Clustering ; Clustering algorithms ; Criteria ; Density ; Erbium ; Hyperspectral imagery ; Hyperspectral imaging ; Image classification ; Image segmentation ; Learning ; Pixels ; Probability distribution ; Sampling ; sampling criterion ; Spectra ; structure density ; Three-dimensional displays ; Training ; Uncertainty</subject><ispartof>IEEE access, 2021, Vol.9, p.61793-61806</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73</citedby><cites>FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73</cites><orcidid>0000-0001-9293-9629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9409072$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Qianming</creatorcontrib><creatorcontrib>Zheng, Bohong</creatorcontrib><creatorcontrib>Yang, Yusheng</creatorcontrib><title>Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, a spectral-spatial active learning (AL) method is proposed based on an up-to-date unlabeled samples sampling strategy concentrated on the structure density supported by breaking ties. The proposed sampling criterion in AL is used for hyperspectral image classification, which involves several steps: First, superpixel segmentation algorithm is conducted on the HSI to cluster pixels with similar spectral-spatial signature into the same superpixel block. Then, density peak clustering technique is performed on the each superpixel block to obtain structure density of the pixels. Meanwhile, probability-based classifier is employed to achieve the probability distributions of pixel. Next, breaking ties (BT) score of each pixel can be calculated by exploiting the probabilities. Additionally, a fusion mechanism is introduced to select the unlabeled samples with representativeness and informativeness advantages by employing the BT-assisted structure density (SD sampling criterion) of each pixel. Finally, the samples with manual labeled class labels are put into the training set to retrain the classifier. Experimental results manifest that the proposed SD-based sampling criterion in active learning can significantly improve the classification accuracy in few labor costs. Thus, it has certain feasibility in practical application.</description><subject>Active learning</subject><subject>Algorithms</subject><subject>breaking ties</subject><subject>Classifiers</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Criteria</subject><subject>Density</subject><subject>Erbium</subject><subject>Hyperspectral imagery</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>Pixels</subject><subject>Probability distribution</subject><subject>Sampling</subject><subject>sampling criterion</subject><subject>Spectra</subject><subject>structure density</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9Lw0AQxYMoWGo_QS8Bz6n7L5vsscRqCwUPUfS2bDazdUtM4u5W6Lc3NaU4lxke834z8KJojtECYyQelkWxKssFQQQvKMoYQ-lVNCGYi4SmlF__m2-jmfd7NFQ-SGk2iT7KHnRwqknKXgWrmnipg_2BeAvKtbbdxe82fMZlcAcdDg7iR2i9DcfYdC5eH3tw_gyIi0Z5b43VA6dr76IboxoPs3OfRm9Pq9dinWxfnjfFcptohvKQ4AwIJxlHphJEGIYNRQYJmtZcYJZTZhQ1FRCBTZYajjGvQdSakVyw2uiMTqPNyK07tZe9s1_KHWWnrPwTOreTygWrG5DMmAyJKtcMA6sUVVzUNaeUIEVxyk6s-5HVu-77AD7IfXdw7fC-JCkWKKeCpcMWHbe067x3YC5XMZKnROSYiDwlIs-JDK756LIAcHEIhgTKCP0FbWSGuA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Qianming</creator><creator>Zheng, Bohong</creator><creator>Yang, Yusheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9293-9629</orcidid></search><sort><creationdate>2021</creationdate><title>Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification</title><author>Li, Qianming ; Zheng, Bohong ; Yang, Yusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active learning</topic><topic>Algorithms</topic><topic>breaking ties</topic><topic>Classifiers</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Criteria</topic><topic>Density</topic><topic>Erbium</topic><topic>Hyperspectral imagery</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>Pixels</topic><topic>Probability distribution</topic><topic>Sampling</topic><topic>sampling criterion</topic><topic>Spectra</topic><topic>structure density</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qianming</creatorcontrib><creatorcontrib>Zheng, Bohong</creatorcontrib><creatorcontrib>Yang, Yusheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qianming</au><au>Zheng, Bohong</au><au>Yang, Yusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>61793</spage><epage>61806</epage><pages>61793-61806</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, a spectral-spatial active learning (AL) method is proposed based on an up-to-date unlabeled samples sampling strategy concentrated on the structure density supported by breaking ties. The proposed sampling criterion in AL is used for hyperspectral image classification, which involves several steps: First, superpixel segmentation algorithm is conducted on the HSI to cluster pixels with similar spectral-spatial signature into the same superpixel block. Then, density peak clustering technique is performed on the each superpixel block to obtain structure density of the pixels. Meanwhile, probability-based classifier is employed to achieve the probability distributions of pixel. Next, breaking ties (BT) score of each pixel can be calculated by exploiting the probabilities. Additionally, a fusion mechanism is introduced to select the unlabeled samples with representativeness and informativeness advantages by employing the BT-assisted structure density (SD sampling criterion) of each pixel. Finally, the samples with manual labeled class labels are put into the training set to retrain the classifier. Experimental results manifest that the proposed SD-based sampling criterion in active learning can significantly improve the classification accuracy in few labor costs. Thus, it has certain feasibility in practical application.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3074405</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9293-9629</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.61793-61806
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3074405
source IEEE Xplore Open Access Journals
subjects Active learning
Algorithms
breaking ties
Classifiers
Clustering
Clustering algorithms
Criteria
Density
Erbium
Hyperspectral imagery
Hyperspectral imaging
Image classification
Image segmentation
Learning
Pixels
Probability distribution
Sampling
sampling criterion
Spectra
structure density
Three-dimensional displays
Training
Uncertainty
title Spectral-Spatial Active Learning With Structure Density for Hyperspectral Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral-Spatial%20Active%20Learning%20With%20Structure%20Density%20for%20Hyperspectral%20Classification&rft.jtitle=IEEE%20access&rft.au=Li,%20Qianming&rft.date=2021&rft.volume=9&rft.spage=61793&rft.epage=61806&rft.pages=61793-61806&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3074405&rft_dat=%3Cproquest_cross%3E2519083945%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-17e262760fb929f41f30f0935d6914834fa3fbe291f75f6116de9dc42894dfc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2519083945&rft_id=info:pmid/&rft_ieee_id=9409072&rfr_iscdi=true