Loading…

An Approach to Acquire Path-Following Skills by Industrial Robots From Human Demonstration

Industrial robots have mainly been programmed by operators using teach pendants in a point-to-point scheme with limited sensing capabilities. New developments in robotics have attracted a lot of attention to robot motor skill learning via human interaction using Learning from Demonstration (LfD) tec...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.82351-82363
Main Authors: Rodriguez-Linan, Angel, Lopez-Juarez, Ismael, Maldonado-Ramirez, Alan, Zalapa-Elias, Antonio, Torres-Trevino, Luis, Navarro-Gonzalez, Jose Luis, Chinas-Sanchez, Pamela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523
cites cdi_FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523
container_end_page 82363
container_issue
container_start_page 82351
container_title IEEE access
container_volume 9
creator Rodriguez-Linan, Angel
Lopez-Juarez, Ismael
Maldonado-Ramirez, Alan
Zalapa-Elias, Antonio
Torres-Trevino, Luis
Navarro-Gonzalez, Jose Luis
Chinas-Sanchez, Pamela
description Industrial robots have mainly been programmed by operators using teach pendants in a point-to-point scheme with limited sensing capabilities. New developments in robotics have attracted a lot of attention to robot motor skill learning via human interaction using Learning from Demonstration (LfD) techniques. Robot skill acquisition using LfD techniques is characterised by a high-level stage in charge of learning connected actions and a low-level stage concerned with motor coordination and reproduction of an observed path. In this paper, we present an approach to acquire a path-following skill by a robot in the low-level stage which deals with the correspondence of mapping links and joints from a human operator to a robot so that the robot can actually follow a path. We present the design of an Inertial Measurement Unit (IMU) device that is primarily used as an input to acquire the robot skill. The approach is validated using a motion capture system as ground truth to assess the spatial deviation from the human-taught path to the robot's final trajectory.
doi_str_mv 10.1109/ACCESS.2021.3086701
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3086701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9447244</ieee_id><doaj_id>oai_doaj_org_article_5ce444ca213342969fb3ff6012d43049</doaj_id><sourcerecordid>2541466164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523</originalsourceid><addsrcrecordid>eNpNUcFu2zAMNYYNaNHlC3IRsLMzUZJl62hkyRogwIamu_QiyDKdKnOsRLIx9O-nzkUxXkiQfO8RfFm2BLoCoOprvV5vDocVowxWnFaypPAhu2UgVc4LLj_-V99kixhPNEWVWkV5mz3VA6kvl-CNfSajJ7W9Ti4g-WnG53zr-97_ccORHH67vo-keSG7oZ3iGJzpyYNv_BjJNvgzuZ_OZiDf8OyHNDWj88Pn7FNn-oiLt3yX_dpuHtf3-f7H99263udW0GrMC84FNLxULS2w5KUFsLzkXdsUYFSFRmHFEKGVrKGqY02D2FZQCiEkw4Lxu2w387benPQluLMJL9obp_81fDhqE0Zne9SFxQSzhkESZUqqruFdJymwVnAqVOL6MnOlj1wnjKM--SkM6XzNCgFCSpAibfF5ywYfY8DuXRWofvVEz57oV0_0mycJtZxRDhHfEUqIkgnB_wJfeIZh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541466164</pqid></control><display><type>article</type><title>An Approach to Acquire Path-Following Skills by Industrial Robots From Human Demonstration</title><source>IEEE Xplore Open Access Journals</source><creator>Rodriguez-Linan, Angel ; Lopez-Juarez, Ismael ; Maldonado-Ramirez, Alan ; Zalapa-Elias, Antonio ; Torres-Trevino, Luis ; Navarro-Gonzalez, Jose Luis ; Chinas-Sanchez, Pamela</creator><creatorcontrib>Rodriguez-Linan, Angel ; Lopez-Juarez, Ismael ; Maldonado-Ramirez, Alan ; Zalapa-Elias, Antonio ; Torres-Trevino, Luis ; Navarro-Gonzalez, Jose Luis ; Chinas-Sanchez, Pamela</creatorcontrib><description>Industrial robots have mainly been programmed by operators using teach pendants in a point-to-point scheme with limited sensing capabilities. New developments in robotics have attracted a lot of attention to robot motor skill learning via human interaction using Learning from Demonstration (LfD) techniques. Robot skill acquisition using LfD techniques is characterised by a high-level stage in charge of learning connected actions and a low-level stage concerned with motor coordination and reproduction of an observed path. In this paper, we present an approach to acquire a path-following skill by a robot in the low-level stage which deals with the correspondence of mapping links and joints from a human operator to a robot so that the robot can actually follow a path. We present the design of an Inertial Measurement Unit (IMU) device that is primarily used as an input to acquire the robot skill. The approach is validated using a motion capture system as ground truth to assess the spatial deviation from the human-taught path to the robot's final trajectory.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3086701</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D trajectory acquisition ; Estimation ; Human motion ; Industrial robots ; inertial measurement unit (IMU) ; Inertial platforms ; Learning ; Learning from demonstration (LfD) ; Motion capture ; Robot kinematics ; Robot sensing systems ; Robotics ; Robots ; Sensors ; Service robots ; Task analysis ; Teach pendants</subject><ispartof>IEEE access, 2021, Vol.9, p.82351-82363</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523</citedby><cites>FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523</cites><orcidid>0000-0001-6405-5519 ; 0000-0002-0204-4424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9447244$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Rodriguez-Linan, Angel</creatorcontrib><creatorcontrib>Lopez-Juarez, Ismael</creatorcontrib><creatorcontrib>Maldonado-Ramirez, Alan</creatorcontrib><creatorcontrib>Zalapa-Elias, Antonio</creatorcontrib><creatorcontrib>Torres-Trevino, Luis</creatorcontrib><creatorcontrib>Navarro-Gonzalez, Jose Luis</creatorcontrib><creatorcontrib>Chinas-Sanchez, Pamela</creatorcontrib><title>An Approach to Acquire Path-Following Skills by Industrial Robots From Human Demonstration</title><title>IEEE access</title><addtitle>Access</addtitle><description>Industrial robots have mainly been programmed by operators using teach pendants in a point-to-point scheme with limited sensing capabilities. New developments in robotics have attracted a lot of attention to robot motor skill learning via human interaction using Learning from Demonstration (LfD) techniques. Robot skill acquisition using LfD techniques is characterised by a high-level stage in charge of learning connected actions and a low-level stage concerned with motor coordination and reproduction of an observed path. In this paper, we present an approach to acquire a path-following skill by a robot in the low-level stage which deals with the correspondence of mapping links and joints from a human operator to a robot so that the robot can actually follow a path. We present the design of an Inertial Measurement Unit (IMU) device that is primarily used as an input to acquire the robot skill. The approach is validated using a motion capture system as ground truth to assess the spatial deviation from the human-taught path to the robot's final trajectory.</description><subject>3D trajectory acquisition</subject><subject>Estimation</subject><subject>Human motion</subject><subject>Industrial robots</subject><subject>inertial measurement unit (IMU)</subject><subject>Inertial platforms</subject><subject>Learning</subject><subject>Learning from demonstration (LfD)</subject><subject>Motion capture</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Service robots</subject><subject>Task analysis</subject><subject>Teach pendants</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu2zAMNYYNaNHlC3IRsLMzUZJl62hkyRogwIamu_QiyDKdKnOsRLIx9O-nzkUxXkiQfO8RfFm2BLoCoOprvV5vDocVowxWnFaypPAhu2UgVc4LLj_-V99kixhPNEWVWkV5mz3VA6kvl-CNfSajJ7W9Ti4g-WnG53zr-97_ccORHH67vo-keSG7oZ3iGJzpyYNv_BjJNvgzuZ_OZiDf8OyHNDWj88Pn7FNn-oiLt3yX_dpuHtf3-f7H99263udW0GrMC84FNLxULS2w5KUFsLzkXdsUYFSFRmHFEKGVrKGqY02D2FZQCiEkw4Lxu2w387benPQluLMJL9obp_81fDhqE0Zne9SFxQSzhkESZUqqruFdJymwVnAqVOL6MnOlj1wnjKM--SkM6XzNCgFCSpAibfF5ywYfY8DuXRWofvVEz57oV0_0mycJtZxRDhHfEUqIkgnB_wJfeIZh</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Rodriguez-Linan, Angel</creator><creator>Lopez-Juarez, Ismael</creator><creator>Maldonado-Ramirez, Alan</creator><creator>Zalapa-Elias, Antonio</creator><creator>Torres-Trevino, Luis</creator><creator>Navarro-Gonzalez, Jose Luis</creator><creator>Chinas-Sanchez, Pamela</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6405-5519</orcidid><orcidid>https://orcid.org/0000-0002-0204-4424</orcidid></search><sort><creationdate>2021</creationdate><title>An Approach to Acquire Path-Following Skills by Industrial Robots From Human Demonstration</title><author>Rodriguez-Linan, Angel ; Lopez-Juarez, Ismael ; Maldonado-Ramirez, Alan ; Zalapa-Elias, Antonio ; Torres-Trevino, Luis ; Navarro-Gonzalez, Jose Luis ; Chinas-Sanchez, Pamela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D trajectory acquisition</topic><topic>Estimation</topic><topic>Human motion</topic><topic>Industrial robots</topic><topic>inertial measurement unit (IMU)</topic><topic>Inertial platforms</topic><topic>Learning</topic><topic>Learning from demonstration (LfD)</topic><topic>Motion capture</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Service robots</topic><topic>Task analysis</topic><topic>Teach pendants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez-Linan, Angel</creatorcontrib><creatorcontrib>Lopez-Juarez, Ismael</creatorcontrib><creatorcontrib>Maldonado-Ramirez, Alan</creatorcontrib><creatorcontrib>Zalapa-Elias, Antonio</creatorcontrib><creatorcontrib>Torres-Trevino, Luis</creatorcontrib><creatorcontrib>Navarro-Gonzalez, Jose Luis</creatorcontrib><creatorcontrib>Chinas-Sanchez, Pamela</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez-Linan, Angel</au><au>Lopez-Juarez, Ismael</au><au>Maldonado-Ramirez, Alan</au><au>Zalapa-Elias, Antonio</au><au>Torres-Trevino, Luis</au><au>Navarro-Gonzalez, Jose Luis</au><au>Chinas-Sanchez, Pamela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Approach to Acquire Path-Following Skills by Industrial Robots From Human Demonstration</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>82351</spage><epage>82363</epage><pages>82351-82363</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Industrial robots have mainly been programmed by operators using teach pendants in a point-to-point scheme with limited sensing capabilities. New developments in robotics have attracted a lot of attention to robot motor skill learning via human interaction using Learning from Demonstration (LfD) techniques. Robot skill acquisition using LfD techniques is characterised by a high-level stage in charge of learning connected actions and a low-level stage concerned with motor coordination and reproduction of an observed path. In this paper, we present an approach to acquire a path-following skill by a robot in the low-level stage which deals with the correspondence of mapping links and joints from a human operator to a robot so that the robot can actually follow a path. We present the design of an Inertial Measurement Unit (IMU) device that is primarily used as an input to acquire the robot skill. The approach is validated using a motion capture system as ground truth to assess the spatial deviation from the human-taught path to the robot's final trajectory.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3086701</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6405-5519</orcidid><orcidid>https://orcid.org/0000-0002-0204-4424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.82351-82363
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3086701
source IEEE Xplore Open Access Journals
subjects 3D trajectory acquisition
Estimation
Human motion
Industrial robots
inertial measurement unit (IMU)
Inertial platforms
Learning
Learning from demonstration (LfD)
Motion capture
Robot kinematics
Robot sensing systems
Robotics
Robots
Sensors
Service robots
Task analysis
Teach pendants
title An Approach to Acquire Path-Following Skills by Industrial Robots From Human Demonstration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Approach%20to%20Acquire%20Path-Following%20Skills%20by%20Industrial%20Robots%20From%20Human%20Demonstration&rft.jtitle=IEEE%20access&rft.au=Rodriguez-Linan,%20Angel&rft.date=2021&rft.volume=9&rft.spage=82351&rft.epage=82363&rft.pages=82351-82363&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3086701&rft_dat=%3Cproquest_cross%3E2541466164%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2541466164&rft_id=info:pmid/&rft_ieee_id=9447244&rfr_iscdi=true