Loading…
An Approach to Acquire Path-Following Skills by Industrial Robots From Human Demonstration
Industrial robots have mainly been programmed by operators using teach pendants in a point-to-point scheme with limited sensing capabilities. New developments in robotics have attracted a lot of attention to robot motor skill learning via human interaction using Learning from Demonstration (LfD) tec...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.82351-82363 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523 |
container_end_page | 82363 |
container_issue | |
container_start_page | 82351 |
container_title | IEEE access |
container_volume | 9 |
creator | Rodriguez-Linan, Angel Lopez-Juarez, Ismael Maldonado-Ramirez, Alan Zalapa-Elias, Antonio Torres-Trevino, Luis Navarro-Gonzalez, Jose Luis Chinas-Sanchez, Pamela |
description | Industrial robots have mainly been programmed by operators using teach pendants in a point-to-point scheme with limited sensing capabilities. New developments in robotics have attracted a lot of attention to robot motor skill learning via human interaction using Learning from Demonstration (LfD) techniques. Robot skill acquisition using LfD techniques is characterised by a high-level stage in charge of learning connected actions and a low-level stage concerned with motor coordination and reproduction of an observed path. In this paper, we present an approach to acquire a path-following skill by a robot in the low-level stage which deals with the correspondence of mapping links and joints from a human operator to a robot so that the robot can actually follow a path. We present the design of an Inertial Measurement Unit (IMU) device that is primarily used as an input to acquire the robot skill. The approach is validated using a motion capture system as ground truth to assess the spatial deviation from the human-taught path to the robot's final trajectory. |
doi_str_mv | 10.1109/ACCESS.2021.3086701 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3086701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9447244</ieee_id><doaj_id>oai_doaj_org_article_5ce444ca213342969fb3ff6012d43049</doaj_id><sourcerecordid>2541466164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523</originalsourceid><addsrcrecordid>eNpNUcFu2zAMNYYNaNHlC3IRsLMzUZJl62hkyRogwIamu_QiyDKdKnOsRLIx9O-nzkUxXkiQfO8RfFm2BLoCoOprvV5vDocVowxWnFaypPAhu2UgVc4LLj_-V99kixhPNEWVWkV5mz3VA6kvl-CNfSajJ7W9Ti4g-WnG53zr-97_ccORHH67vo-keSG7oZ3iGJzpyYNv_BjJNvgzuZ_OZiDf8OyHNDWj88Pn7FNn-oiLt3yX_dpuHtf3-f7H99263udW0GrMC84FNLxULS2w5KUFsLzkXdsUYFSFRmHFEKGVrKGqY02D2FZQCiEkw4Lxu2w387benPQluLMJL9obp_81fDhqE0Zne9SFxQSzhkESZUqqruFdJymwVnAqVOL6MnOlj1wnjKM--SkM6XzNCgFCSpAibfF5ywYfY8DuXRWofvVEz57oV0_0mycJtZxRDhHfEUqIkgnB_wJfeIZh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541466164</pqid></control><display><type>article</type><title>An Approach to Acquire Path-Following Skills by Industrial Robots From Human Demonstration</title><source>IEEE Xplore Open Access Journals</source><creator>Rodriguez-Linan, Angel ; Lopez-Juarez, Ismael ; Maldonado-Ramirez, Alan ; Zalapa-Elias, Antonio ; Torres-Trevino, Luis ; Navarro-Gonzalez, Jose Luis ; Chinas-Sanchez, Pamela</creator><creatorcontrib>Rodriguez-Linan, Angel ; Lopez-Juarez, Ismael ; Maldonado-Ramirez, Alan ; Zalapa-Elias, Antonio ; Torres-Trevino, Luis ; Navarro-Gonzalez, Jose Luis ; Chinas-Sanchez, Pamela</creatorcontrib><description>Industrial robots have mainly been programmed by operators using teach pendants in a point-to-point scheme with limited sensing capabilities. New developments in robotics have attracted a lot of attention to robot motor skill learning via human interaction using Learning from Demonstration (LfD) techniques. Robot skill acquisition using LfD techniques is characterised by a high-level stage in charge of learning connected actions and a low-level stage concerned with motor coordination and reproduction of an observed path. In this paper, we present an approach to acquire a path-following skill by a robot in the low-level stage which deals with the correspondence of mapping links and joints from a human operator to a robot so that the robot can actually follow a path. We present the design of an Inertial Measurement Unit (IMU) device that is primarily used as an input to acquire the robot skill. The approach is validated using a motion capture system as ground truth to assess the spatial deviation from the human-taught path to the robot's final trajectory.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3086701</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D trajectory acquisition ; Estimation ; Human motion ; Industrial robots ; inertial measurement unit (IMU) ; Inertial platforms ; Learning ; Learning from demonstration (LfD) ; Motion capture ; Robot kinematics ; Robot sensing systems ; Robotics ; Robots ; Sensors ; Service robots ; Task analysis ; Teach pendants</subject><ispartof>IEEE access, 2021, Vol.9, p.82351-82363</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523</citedby><cites>FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523</cites><orcidid>0000-0001-6405-5519 ; 0000-0002-0204-4424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9447244$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Rodriguez-Linan, Angel</creatorcontrib><creatorcontrib>Lopez-Juarez, Ismael</creatorcontrib><creatorcontrib>Maldonado-Ramirez, Alan</creatorcontrib><creatorcontrib>Zalapa-Elias, Antonio</creatorcontrib><creatorcontrib>Torres-Trevino, Luis</creatorcontrib><creatorcontrib>Navarro-Gonzalez, Jose Luis</creatorcontrib><creatorcontrib>Chinas-Sanchez, Pamela</creatorcontrib><title>An Approach to Acquire Path-Following Skills by Industrial Robots From Human Demonstration</title><title>IEEE access</title><addtitle>Access</addtitle><description>Industrial robots have mainly been programmed by operators using teach pendants in a point-to-point scheme with limited sensing capabilities. New developments in robotics have attracted a lot of attention to robot motor skill learning via human interaction using Learning from Demonstration (LfD) techniques. Robot skill acquisition using LfD techniques is characterised by a high-level stage in charge of learning connected actions and a low-level stage concerned with motor coordination and reproduction of an observed path. In this paper, we present an approach to acquire a path-following skill by a robot in the low-level stage which deals with the correspondence of mapping links and joints from a human operator to a robot so that the robot can actually follow a path. We present the design of an Inertial Measurement Unit (IMU) device that is primarily used as an input to acquire the robot skill. The approach is validated using a motion capture system as ground truth to assess the spatial deviation from the human-taught path to the robot's final trajectory.</description><subject>3D trajectory acquisition</subject><subject>Estimation</subject><subject>Human motion</subject><subject>Industrial robots</subject><subject>inertial measurement unit (IMU)</subject><subject>Inertial platforms</subject><subject>Learning</subject><subject>Learning from demonstration (LfD)</subject><subject>Motion capture</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Service robots</subject><subject>Task analysis</subject><subject>Teach pendants</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu2zAMNYYNaNHlC3IRsLMzUZJl62hkyRogwIamu_QiyDKdKnOsRLIx9O-nzkUxXkiQfO8RfFm2BLoCoOprvV5vDocVowxWnFaypPAhu2UgVc4LLj_-V99kixhPNEWVWkV5mz3VA6kvl-CNfSajJ7W9Ti4g-WnG53zr-97_ccORHH67vo-keSG7oZ3iGJzpyYNv_BjJNvgzuZ_OZiDf8OyHNDWj88Pn7FNn-oiLt3yX_dpuHtf3-f7H99263udW0GrMC84FNLxULS2w5KUFsLzkXdsUYFSFRmHFEKGVrKGqY02D2FZQCiEkw4Lxu2w387benPQluLMJL9obp_81fDhqE0Zne9SFxQSzhkESZUqqruFdJymwVnAqVOL6MnOlj1wnjKM--SkM6XzNCgFCSpAibfF5ywYfY8DuXRWofvVEz57oV0_0mycJtZxRDhHfEUqIkgnB_wJfeIZh</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Rodriguez-Linan, Angel</creator><creator>Lopez-Juarez, Ismael</creator><creator>Maldonado-Ramirez, Alan</creator><creator>Zalapa-Elias, Antonio</creator><creator>Torres-Trevino, Luis</creator><creator>Navarro-Gonzalez, Jose Luis</creator><creator>Chinas-Sanchez, Pamela</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6405-5519</orcidid><orcidid>https://orcid.org/0000-0002-0204-4424</orcidid></search><sort><creationdate>2021</creationdate><title>An Approach to Acquire Path-Following Skills by Industrial Robots From Human Demonstration</title><author>Rodriguez-Linan, Angel ; Lopez-Juarez, Ismael ; Maldonado-Ramirez, Alan ; Zalapa-Elias, Antonio ; Torres-Trevino, Luis ; Navarro-Gonzalez, Jose Luis ; Chinas-Sanchez, Pamela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D trajectory acquisition</topic><topic>Estimation</topic><topic>Human motion</topic><topic>Industrial robots</topic><topic>inertial measurement unit (IMU)</topic><topic>Inertial platforms</topic><topic>Learning</topic><topic>Learning from demonstration (LfD)</topic><topic>Motion capture</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Service robots</topic><topic>Task analysis</topic><topic>Teach pendants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez-Linan, Angel</creatorcontrib><creatorcontrib>Lopez-Juarez, Ismael</creatorcontrib><creatorcontrib>Maldonado-Ramirez, Alan</creatorcontrib><creatorcontrib>Zalapa-Elias, Antonio</creatorcontrib><creatorcontrib>Torres-Trevino, Luis</creatorcontrib><creatorcontrib>Navarro-Gonzalez, Jose Luis</creatorcontrib><creatorcontrib>Chinas-Sanchez, Pamela</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez-Linan, Angel</au><au>Lopez-Juarez, Ismael</au><au>Maldonado-Ramirez, Alan</au><au>Zalapa-Elias, Antonio</au><au>Torres-Trevino, Luis</au><au>Navarro-Gonzalez, Jose Luis</au><au>Chinas-Sanchez, Pamela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Approach to Acquire Path-Following Skills by Industrial Robots From Human Demonstration</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>82351</spage><epage>82363</epage><pages>82351-82363</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Industrial robots have mainly been programmed by operators using teach pendants in a point-to-point scheme with limited sensing capabilities. New developments in robotics have attracted a lot of attention to robot motor skill learning via human interaction using Learning from Demonstration (LfD) techniques. Robot skill acquisition using LfD techniques is characterised by a high-level stage in charge of learning connected actions and a low-level stage concerned with motor coordination and reproduction of an observed path. In this paper, we present an approach to acquire a path-following skill by a robot in the low-level stage which deals with the correspondence of mapping links and joints from a human operator to a robot so that the robot can actually follow a path. We present the design of an Inertial Measurement Unit (IMU) device that is primarily used as an input to acquire the robot skill. The approach is validated using a motion capture system as ground truth to assess the spatial deviation from the human-taught path to the robot's final trajectory.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3086701</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6405-5519</orcidid><orcidid>https://orcid.org/0000-0002-0204-4424</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.82351-82363 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3086701 |
source | IEEE Xplore Open Access Journals |
subjects | 3D trajectory acquisition Estimation Human motion Industrial robots inertial measurement unit (IMU) Inertial platforms Learning Learning from demonstration (LfD) Motion capture Robot kinematics Robot sensing systems Robotics Robots Sensors Service robots Task analysis Teach pendants |
title | An Approach to Acquire Path-Following Skills by Industrial Robots From Human Demonstration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Approach%20to%20Acquire%20Path-Following%20Skills%20by%20Industrial%20Robots%20From%20Human%20Demonstration&rft.jtitle=IEEE%20access&rft.au=Rodriguez-Linan,%20Angel&rft.date=2021&rft.volume=9&rft.spage=82351&rft.epage=82363&rft.pages=82351-82363&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3086701&rft_dat=%3Cproquest_cross%3E2541466164%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-53341b379d05e737c11c373fdb51a98ea9e82ee1d62b09f2bbeed81744462e523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2541466164&rft_id=info:pmid/&rft_ieee_id=9447244&rfr_iscdi=true |