Loading…

Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds

Cloud technologies are being used nowadays to cope with the increased computing and storage requirements of services and applications. Nevertheless, decisions about resources to be provisioned and the corresponding scheduling plans are far from being easily made especially because of the variability...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.89891-89905
Main Authors: Calzarossa, Maria Carla, Vedova, Marco L. Della, Massari, Luisa, Nebbione, Giuseppe, Tessera, Daniele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3
cites cdi_FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3
container_end_page 89905
container_issue
container_start_page 89891
container_title IEEE access
container_volume 9
creator Calzarossa, Maria Carla
Vedova, Marco L. Della
Massari, Luisa
Nebbione, Giuseppe
Tessera, Daniele
description Cloud technologies are being used nowadays to cope with the increased computing and storage requirements of services and applications. Nevertheless, decisions about resources to be provisioned and the corresponding scheduling plans are far from being easily made especially because of the variability and uncertainty affecting workload demands as well as technological infrastructure performance. In this paper we address these issues by formulating a multi-objective constrained optimization problem aimed at identifying the optimal scheduling plans for scientific workflows to be deployed in uncertain cloud environments. In particular, we focus on minimizing the expected workflow execution time and monetary cost under probabilistic constraints on deadline and budget. According to the proposed approach, this problem is solved offline, that is, prior to workflow execution, with the intention of allowing cloud users to choose the plan of the Pareto optimal set satisfying their requirements and preferences. The analysis of the combined effects of cloud uncertainty and probabilistic constraints has shown that the solutions of the optimization problem are strongly affected by uncertainty. Hence, to properly provision cloud resources, it is compelling to precisely quantify uncertainty and take explicitly into account its effects in the decision process.
doi_str_mv 10.1109/ACCESS.2021.3091310
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3091310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9461757</ieee_id><doaj_id>oai_doaj_org_article_398fa75b786a44c4891808f576a1011f</doaj_id><sourcerecordid>2546729833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3</originalsourceid><addsrcrecordid>eNpNUcFu1DAUjBBIVKVf0Islzln8Yju2j0sotFLRHpaKo_Xi2IuXNF4chwq-vi6pKt7ljUYz8540VXUJdANA9Ydt113t95uGNrBhVAMD-qo6a6DVNROsff0ffltdzPORllGFEvKswq_LmEO964_O5vDbkd0ph_vwF3OIE4mefHI4jGFyBKeBfFyGg8v19gGTI99j-unH-ED29ocbliI6kDCRu8m6lLGgbozLML-r3ngcZ3fxvM-ru89X37rr-nb35abb3taWS5VrRiUy7qlQfdtzaYFaEJoKin4YmLOcA_MaWwcChLUosLdeWwZWK8QiOa9u1twh4tGcUrjH9MdEDOYfEdPBYMrBjs4wrTxK0UvVIueWKw2KKi9ki0ABfMl6v2adUvy1uDmbY1zSVN43jeCtbLRirKjYqrIpznNy_uUqUPNUjVmrMU_VmOdqiutydQXn3ItD8xakkOwRyDqJ8g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546729833</pqid></control><display><type>article</type><title>Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds</title><source>IEEE Xplore Open Access Journals</source><creator>Calzarossa, Maria Carla ; Vedova, Marco L. Della ; Massari, Luisa ; Nebbione, Giuseppe ; Tessera, Daniele</creator><creatorcontrib>Calzarossa, Maria Carla ; Vedova, Marco L. Della ; Massari, Luisa ; Nebbione, Giuseppe ; Tessera, Daniele</creatorcontrib><description>Cloud technologies are being used nowadays to cope with the increased computing and storage requirements of services and applications. Nevertheless, decisions about resources to be provisioned and the corresponding scheduling plans are far from being easily made especially because of the variability and uncertainty affecting workload demands as well as technological infrastructure performance. In this paper we address these issues by formulating a multi-objective constrained optimization problem aimed at identifying the optimal scheduling plans for scientific workflows to be deployed in uncertain cloud environments. In particular, we focus on minimizing the expected workflow execution time and monetary cost under probabilistic constraints on deadline and budget. According to the proposed approach, this problem is solved offline, that is, prior to workflow execution, with the intention of allowing cloud users to choose the plan of the Pareto optimal set satisfying their requirements and preferences. The analysis of the combined effects of cloud uncertainty and probabilistic constraints has shown that the solutions of the optimization problem are strongly affected by uncertainty. Hence, to properly provision cloud resources, it is compelling to precisely quantify uncertainty and take explicitly into account its effects in the decision process.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3091310</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Budgets ; Cloud computing ; Constraints ; Genetic Algorithm ; Monte Carlo method ; multi-objective constrained optimization ; Multiple objective analysis ; Optimal scheduling ; Optimization ; Pareto optimization ; Probabilistic logic ; Processor scheduling ; Scheduling ; scientific workflows ; Task analysis ; Uncertainty ; Workflow</subject><ispartof>IEEE access, 2021, Vol.9, p.89891-89905</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3</citedby><cites>FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3</cites><orcidid>0000-0003-1015-3142 ; 0000-0002-5497-8384 ; 0000-0002-4703-7500 ; 0000-0002-3924-8316 ; 0000-0001-7168-599X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9461757$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Calzarossa, Maria Carla</creatorcontrib><creatorcontrib>Vedova, Marco L. Della</creatorcontrib><creatorcontrib>Massari, Luisa</creatorcontrib><creatorcontrib>Nebbione, Giuseppe</creatorcontrib><creatorcontrib>Tessera, Daniele</creatorcontrib><title>Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cloud technologies are being used nowadays to cope with the increased computing and storage requirements of services and applications. Nevertheless, decisions about resources to be provisioned and the corresponding scheduling plans are far from being easily made especially because of the variability and uncertainty affecting workload demands as well as technological infrastructure performance. In this paper we address these issues by formulating a multi-objective constrained optimization problem aimed at identifying the optimal scheduling plans for scientific workflows to be deployed in uncertain cloud environments. In particular, we focus on minimizing the expected workflow execution time and monetary cost under probabilistic constraints on deadline and budget. According to the proposed approach, this problem is solved offline, that is, prior to workflow execution, with the intention of allowing cloud users to choose the plan of the Pareto optimal set satisfying their requirements and preferences. The analysis of the combined effects of cloud uncertainty and probabilistic constraints has shown that the solutions of the optimization problem are strongly affected by uncertainty. Hence, to properly provision cloud resources, it is compelling to precisely quantify uncertainty and take explicitly into account its effects in the decision process.</description><subject>Budgets</subject><subject>Cloud computing</subject><subject>Constraints</subject><subject>Genetic Algorithm</subject><subject>Monte Carlo method</subject><subject>multi-objective constrained optimization</subject><subject>Multiple objective analysis</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Probabilistic logic</subject><subject>Processor scheduling</subject><subject>Scheduling</subject><subject>scientific workflows</subject><subject>Task analysis</subject><subject>Uncertainty</subject><subject>Workflow</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu1DAUjBBIVKVf0Islzln8Yju2j0sotFLRHpaKo_Xi2IuXNF4chwq-vi6pKt7ljUYz8540VXUJdANA9Ydt113t95uGNrBhVAMD-qo6a6DVNROsff0ffltdzPORllGFEvKswq_LmEO964_O5vDbkd0ph_vwF3OIE4mefHI4jGFyBKeBfFyGg8v19gGTI99j-unH-ED29ocbliI6kDCRu8m6lLGgbozLML-r3ngcZ3fxvM-ru89X37rr-nb35abb3taWS5VrRiUy7qlQfdtzaYFaEJoKin4YmLOcA_MaWwcChLUosLdeWwZWK8QiOa9u1twh4tGcUrjH9MdEDOYfEdPBYMrBjs4wrTxK0UvVIueWKw2KKi9ki0ABfMl6v2adUvy1uDmbY1zSVN43jeCtbLRirKjYqrIpznNy_uUqUPNUjVmrMU_VmOdqiutydQXn3ItD8xakkOwRyDqJ8g</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Calzarossa, Maria Carla</creator><creator>Vedova, Marco L. Della</creator><creator>Massari, Luisa</creator><creator>Nebbione, Giuseppe</creator><creator>Tessera, Daniele</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1015-3142</orcidid><orcidid>https://orcid.org/0000-0002-5497-8384</orcidid><orcidid>https://orcid.org/0000-0002-4703-7500</orcidid><orcidid>https://orcid.org/0000-0002-3924-8316</orcidid><orcidid>https://orcid.org/0000-0001-7168-599X</orcidid></search><sort><creationdate>2021</creationdate><title>Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds</title><author>Calzarossa, Maria Carla ; Vedova, Marco L. Della ; Massari, Luisa ; Nebbione, Giuseppe ; Tessera, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Budgets</topic><topic>Cloud computing</topic><topic>Constraints</topic><topic>Genetic Algorithm</topic><topic>Monte Carlo method</topic><topic>multi-objective constrained optimization</topic><topic>Multiple objective analysis</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Probabilistic logic</topic><topic>Processor scheduling</topic><topic>Scheduling</topic><topic>scientific workflows</topic><topic>Task analysis</topic><topic>Uncertainty</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calzarossa, Maria Carla</creatorcontrib><creatorcontrib>Vedova, Marco L. Della</creatorcontrib><creatorcontrib>Massari, Luisa</creatorcontrib><creatorcontrib>Nebbione, Giuseppe</creatorcontrib><creatorcontrib>Tessera, Daniele</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calzarossa, Maria Carla</au><au>Vedova, Marco L. Della</au><au>Massari, Luisa</au><au>Nebbione, Giuseppe</au><au>Tessera, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>89891</spage><epage>89905</epage><pages>89891-89905</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cloud technologies are being used nowadays to cope with the increased computing and storage requirements of services and applications. Nevertheless, decisions about resources to be provisioned and the corresponding scheduling plans are far from being easily made especially because of the variability and uncertainty affecting workload demands as well as technological infrastructure performance. In this paper we address these issues by formulating a multi-objective constrained optimization problem aimed at identifying the optimal scheduling plans for scientific workflows to be deployed in uncertain cloud environments. In particular, we focus on minimizing the expected workflow execution time and monetary cost under probabilistic constraints on deadline and budget. According to the proposed approach, this problem is solved offline, that is, prior to workflow execution, with the intention of allowing cloud users to choose the plan of the Pareto optimal set satisfying their requirements and preferences. The analysis of the combined effects of cloud uncertainty and probabilistic constraints has shown that the solutions of the optimization problem are strongly affected by uncertainty. Hence, to properly provision cloud resources, it is compelling to precisely quantify uncertainty and take explicitly into account its effects in the decision process.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3091310</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1015-3142</orcidid><orcidid>https://orcid.org/0000-0002-5497-8384</orcidid><orcidid>https://orcid.org/0000-0002-4703-7500</orcidid><orcidid>https://orcid.org/0000-0002-3924-8316</orcidid><orcidid>https://orcid.org/0000-0001-7168-599X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.89891-89905
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3091310
source IEEE Xplore Open Access Journals
subjects Budgets
Cloud computing
Constraints
Genetic Algorithm
Monte Carlo method
multi-objective constrained optimization
Multiple objective analysis
Optimal scheduling
Optimization
Pareto optimization
Probabilistic logic
Processor scheduling
Scheduling
scientific workflows
Task analysis
Uncertainty
Workflow
title Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Objective%20Optimization%20of%20Deadline%20and%20Budget-Aware%20Workflow%20Scheduling%20in%20Uncertain%20Clouds&rft.jtitle=IEEE%20access&rft.au=Calzarossa,%20Maria%20Carla&rft.date=2021&rft.volume=9&rft.spage=89891&rft.epage=89905&rft.pages=89891-89905&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3091310&rft_dat=%3Cproquest_cross%3E2546729833%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2546729833&rft_id=info:pmid/&rft_ieee_id=9461757&rfr_iscdi=true