Loading…
Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds
Cloud technologies are being used nowadays to cope with the increased computing and storage requirements of services and applications. Nevertheless, decisions about resources to be provisioned and the corresponding scheduling plans are far from being easily made especially because of the variability...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.89891-89905 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3 |
container_end_page | 89905 |
container_issue | |
container_start_page | 89891 |
container_title | IEEE access |
container_volume | 9 |
creator | Calzarossa, Maria Carla Vedova, Marco L. Della Massari, Luisa Nebbione, Giuseppe Tessera, Daniele |
description | Cloud technologies are being used nowadays to cope with the increased computing and storage requirements of services and applications. Nevertheless, decisions about resources to be provisioned and the corresponding scheduling plans are far from being easily made especially because of the variability and uncertainty affecting workload demands as well as technological infrastructure performance. In this paper we address these issues by formulating a multi-objective constrained optimization problem aimed at identifying the optimal scheduling plans for scientific workflows to be deployed in uncertain cloud environments. In particular, we focus on minimizing the expected workflow execution time and monetary cost under probabilistic constraints on deadline and budget. According to the proposed approach, this problem is solved offline, that is, prior to workflow execution, with the intention of allowing cloud users to choose the plan of the Pareto optimal set satisfying their requirements and preferences. The analysis of the combined effects of cloud uncertainty and probabilistic constraints has shown that the solutions of the optimization problem are strongly affected by uncertainty. Hence, to properly provision cloud resources, it is compelling to precisely quantify uncertainty and take explicitly into account its effects in the decision process. |
doi_str_mv | 10.1109/ACCESS.2021.3091310 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3091310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9461757</ieee_id><doaj_id>oai_doaj_org_article_398fa75b786a44c4891808f576a1011f</doaj_id><sourcerecordid>2546729833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3</originalsourceid><addsrcrecordid>eNpNUcFu1DAUjBBIVKVf0Islzln8Yju2j0sotFLRHpaKo_Xi2IuXNF4chwq-vi6pKt7ljUYz8540VXUJdANA9Ydt113t95uGNrBhVAMD-qo6a6DVNROsff0ffltdzPORllGFEvKswq_LmEO964_O5vDbkd0ph_vwF3OIE4mefHI4jGFyBKeBfFyGg8v19gGTI99j-unH-ED29ocbliI6kDCRu8m6lLGgbozLML-r3ngcZ3fxvM-ru89X37rr-nb35abb3taWS5VrRiUy7qlQfdtzaYFaEJoKin4YmLOcA_MaWwcChLUosLdeWwZWK8QiOa9u1twh4tGcUrjH9MdEDOYfEdPBYMrBjs4wrTxK0UvVIueWKw2KKi9ki0ABfMl6v2adUvy1uDmbY1zSVN43jeCtbLRirKjYqrIpznNy_uUqUPNUjVmrMU_VmOdqiutydQXn3ItD8xakkOwRyDqJ8g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546729833</pqid></control><display><type>article</type><title>Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds</title><source>IEEE Xplore Open Access Journals</source><creator>Calzarossa, Maria Carla ; Vedova, Marco L. Della ; Massari, Luisa ; Nebbione, Giuseppe ; Tessera, Daniele</creator><creatorcontrib>Calzarossa, Maria Carla ; Vedova, Marco L. Della ; Massari, Luisa ; Nebbione, Giuseppe ; Tessera, Daniele</creatorcontrib><description>Cloud technologies are being used nowadays to cope with the increased computing and storage requirements of services and applications. Nevertheless, decisions about resources to be provisioned and the corresponding scheduling plans are far from being easily made especially because of the variability and uncertainty affecting workload demands as well as technological infrastructure performance. In this paper we address these issues by formulating a multi-objective constrained optimization problem aimed at identifying the optimal scheduling plans for scientific workflows to be deployed in uncertain cloud environments. In particular, we focus on minimizing the expected workflow execution time and monetary cost under probabilistic constraints on deadline and budget. According to the proposed approach, this problem is solved offline, that is, prior to workflow execution, with the intention of allowing cloud users to choose the plan of the Pareto optimal set satisfying their requirements and preferences. The analysis of the combined effects of cloud uncertainty and probabilistic constraints has shown that the solutions of the optimization problem are strongly affected by uncertainty. Hence, to properly provision cloud resources, it is compelling to precisely quantify uncertainty and take explicitly into account its effects in the decision process.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3091310</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Budgets ; Cloud computing ; Constraints ; Genetic Algorithm ; Monte Carlo method ; multi-objective constrained optimization ; Multiple objective analysis ; Optimal scheduling ; Optimization ; Pareto optimization ; Probabilistic logic ; Processor scheduling ; Scheduling ; scientific workflows ; Task analysis ; Uncertainty ; Workflow</subject><ispartof>IEEE access, 2021, Vol.9, p.89891-89905</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3</citedby><cites>FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3</cites><orcidid>0000-0003-1015-3142 ; 0000-0002-5497-8384 ; 0000-0002-4703-7500 ; 0000-0002-3924-8316 ; 0000-0001-7168-599X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9461757$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Calzarossa, Maria Carla</creatorcontrib><creatorcontrib>Vedova, Marco L. Della</creatorcontrib><creatorcontrib>Massari, Luisa</creatorcontrib><creatorcontrib>Nebbione, Giuseppe</creatorcontrib><creatorcontrib>Tessera, Daniele</creatorcontrib><title>Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds</title><title>IEEE access</title><addtitle>Access</addtitle><description>Cloud technologies are being used nowadays to cope with the increased computing and storage requirements of services and applications. Nevertheless, decisions about resources to be provisioned and the corresponding scheduling plans are far from being easily made especially because of the variability and uncertainty affecting workload demands as well as technological infrastructure performance. In this paper we address these issues by formulating a multi-objective constrained optimization problem aimed at identifying the optimal scheduling plans for scientific workflows to be deployed in uncertain cloud environments. In particular, we focus on minimizing the expected workflow execution time and monetary cost under probabilistic constraints on deadline and budget. According to the proposed approach, this problem is solved offline, that is, prior to workflow execution, with the intention of allowing cloud users to choose the plan of the Pareto optimal set satisfying their requirements and preferences. The analysis of the combined effects of cloud uncertainty and probabilistic constraints has shown that the solutions of the optimization problem are strongly affected by uncertainty. Hence, to properly provision cloud resources, it is compelling to precisely quantify uncertainty and take explicitly into account its effects in the decision process.</description><subject>Budgets</subject><subject>Cloud computing</subject><subject>Constraints</subject><subject>Genetic Algorithm</subject><subject>Monte Carlo method</subject><subject>multi-objective constrained optimization</subject><subject>Multiple objective analysis</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Probabilistic logic</subject><subject>Processor scheduling</subject><subject>Scheduling</subject><subject>scientific workflows</subject><subject>Task analysis</subject><subject>Uncertainty</subject><subject>Workflow</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu1DAUjBBIVKVf0Islzln8Yju2j0sotFLRHpaKo_Xi2IuXNF4chwq-vi6pKt7ljUYz8540VXUJdANA9Ydt113t95uGNrBhVAMD-qo6a6DVNROsff0ffltdzPORllGFEvKswq_LmEO964_O5vDbkd0ph_vwF3OIE4mefHI4jGFyBKeBfFyGg8v19gGTI99j-unH-ED29ocbliI6kDCRu8m6lLGgbozLML-r3ngcZ3fxvM-ru89X37rr-nb35abb3taWS5VrRiUy7qlQfdtzaYFaEJoKin4YmLOcA_MaWwcChLUosLdeWwZWK8QiOa9u1twh4tGcUrjH9MdEDOYfEdPBYMrBjs4wrTxK0UvVIueWKw2KKi9ki0ABfMl6v2adUvy1uDmbY1zSVN43jeCtbLRirKjYqrIpznNy_uUqUPNUjVmrMU_VmOdqiutydQXn3ItD8xakkOwRyDqJ8g</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Calzarossa, Maria Carla</creator><creator>Vedova, Marco L. Della</creator><creator>Massari, Luisa</creator><creator>Nebbione, Giuseppe</creator><creator>Tessera, Daniele</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1015-3142</orcidid><orcidid>https://orcid.org/0000-0002-5497-8384</orcidid><orcidid>https://orcid.org/0000-0002-4703-7500</orcidid><orcidid>https://orcid.org/0000-0002-3924-8316</orcidid><orcidid>https://orcid.org/0000-0001-7168-599X</orcidid></search><sort><creationdate>2021</creationdate><title>Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds</title><author>Calzarossa, Maria Carla ; Vedova, Marco L. Della ; Massari, Luisa ; Nebbione, Giuseppe ; Tessera, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Budgets</topic><topic>Cloud computing</topic><topic>Constraints</topic><topic>Genetic Algorithm</topic><topic>Monte Carlo method</topic><topic>multi-objective constrained optimization</topic><topic>Multiple objective analysis</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Probabilistic logic</topic><topic>Processor scheduling</topic><topic>Scheduling</topic><topic>scientific workflows</topic><topic>Task analysis</topic><topic>Uncertainty</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calzarossa, Maria Carla</creatorcontrib><creatorcontrib>Vedova, Marco L. Della</creatorcontrib><creatorcontrib>Massari, Luisa</creatorcontrib><creatorcontrib>Nebbione, Giuseppe</creatorcontrib><creatorcontrib>Tessera, Daniele</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calzarossa, Maria Carla</au><au>Vedova, Marco L. Della</au><au>Massari, Luisa</au><au>Nebbione, Giuseppe</au><au>Tessera, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>89891</spage><epage>89905</epage><pages>89891-89905</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Cloud technologies are being used nowadays to cope with the increased computing and storage requirements of services and applications. Nevertheless, decisions about resources to be provisioned and the corresponding scheduling plans are far from being easily made especially because of the variability and uncertainty affecting workload demands as well as technological infrastructure performance. In this paper we address these issues by formulating a multi-objective constrained optimization problem aimed at identifying the optimal scheduling plans for scientific workflows to be deployed in uncertain cloud environments. In particular, we focus on minimizing the expected workflow execution time and monetary cost under probabilistic constraints on deadline and budget. According to the proposed approach, this problem is solved offline, that is, prior to workflow execution, with the intention of allowing cloud users to choose the plan of the Pareto optimal set satisfying their requirements and preferences. The analysis of the combined effects of cloud uncertainty and probabilistic constraints has shown that the solutions of the optimization problem are strongly affected by uncertainty. Hence, to properly provision cloud resources, it is compelling to precisely quantify uncertainty and take explicitly into account its effects in the decision process.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3091310</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1015-3142</orcidid><orcidid>https://orcid.org/0000-0002-5497-8384</orcidid><orcidid>https://orcid.org/0000-0002-4703-7500</orcidid><orcidid>https://orcid.org/0000-0002-3924-8316</orcidid><orcidid>https://orcid.org/0000-0001-7168-599X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.89891-89905 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3091310 |
source | IEEE Xplore Open Access Journals |
subjects | Budgets Cloud computing Constraints Genetic Algorithm Monte Carlo method multi-objective constrained optimization Multiple objective analysis Optimal scheduling Optimization Pareto optimization Probabilistic logic Processor scheduling Scheduling scientific workflows Task analysis Uncertainty Workflow |
title | Multi-Objective Optimization of Deadline and Budget-Aware Workflow Scheduling in Uncertain Clouds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Objective%20Optimization%20of%20Deadline%20and%20Budget-Aware%20Workflow%20Scheduling%20in%20Uncertain%20Clouds&rft.jtitle=IEEE%20access&rft.au=Calzarossa,%20Maria%20Carla&rft.date=2021&rft.volume=9&rft.spage=89891&rft.epage=89905&rft.pages=89891-89905&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3091310&rft_dat=%3Cproquest_cross%3E2546729833%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-307a34f058b6b47c10c159050afdd3ec4413f9a6e1515cca5abcf9c31c98aadd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2546729833&rft_id=info:pmid/&rft_ieee_id=9461757&rfr_iscdi=true |