Loading…

Traffic-Adaptive CFP Extension for IEEE 802.15.4 DSME MAC in Industrial Wireless Sensor Networks

This paper presents a traffic-adaptive contention-free period (CFP) extension (TaCFPext) protocol for IEEE 802.15.4 deterministic and synchronous multichannel extension (DSME) medium access control (MAC), which aims to satisfy the traffic adaptability requirement of industrial wireless sensor networ...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.94454-94469
Main Authors: Lee, Sang-Woo, Kwon, Jung-Hyok, Zhang, Xue, Kim, Eui-Jik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-a959de92d7d056998529d4111874f6d1870c3180f64fd065a93710a7dfc95d3d3
cites cdi_FETCH-LOGICAL-c408t-a959de92d7d056998529d4111874f6d1870c3180f64fd065a93710a7dfc95d3d3
container_end_page 94469
container_issue
container_start_page 94454
container_title IEEE access
container_volume 9
creator Lee, Sang-Woo
Kwon, Jung-Hyok
Zhang, Xue
Kim, Eui-Jik
description This paper presents a traffic-adaptive contention-free period (CFP) extension (TaCFPext) protocol for IEEE 802.15.4 deterministic and synchronous multichannel extension (DSME) medium access control (MAC), which aims to satisfy the traffic adaptability requirement of industrial wireless sensor networks (IWSNs). The legacy DSME standard has limitations in accommodating highly varying traffic load in IWSNs due to its fixed multi-superframe structure. TaCFPext enables a node to adaptively use a contention access period (CAP) as an extended CFP (extCFP) on the demands of traffic loads in a distributed manner. The node starts TaCFPext when it determines that the CFP of the current multi-superframe is insufficient to accommodate the traffic load. Then, the node selects a CAP to be used as an extCFP, on which it is allocated an extended guaranteed time slot (extGTS). When the traffic load decreases, the extGTS is deallocated before the GTS in CFP, and the extCFP returns to CAP again. An experimental simulation was performed to verify the superiority of TaCFPext. The results demonstrated that TaCFPext outperforms the legacy DSME for aggregate throughput and average delay under various traffic conditions.
doi_str_mv 10.1109/ACCESS.2021.3093893
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3093893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9469783</ieee_id><doaj_id>oai_doaj_org_article_240fa5cdc8054789a1955c7c56602dae</doaj_id><sourcerecordid>2549756298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a959de92d7d056998529d4111874f6d1870c3180f64fd065a93710a7dfc95d3d3</originalsourceid><addsrcrecordid>eNpNkVtrFEEQhQdRMMT8grw0-Dxj37vrcRknupCosBEf26Yv0us6vXbPRv336WRCsF5OUdR3quB03SXBAyEY3m3GcdrtBoopGRgGpoG96M4okdAzweTL__rX3UWte9xKt5FQZ93322JjTK7feHtc0l1A49UXNP1dwlxTnlHMBW2naUIa04GIgaP3u5sJ3WxGlGa0nf2pLiXZA_qWSjiEWtGukQ36FJY_ufysb7pX0R5quHjS8-7r1XQ7fuyvP3_Yjpvr3nGsl96CAB-AeuWxkABaUPCcEKIVj9I3wY4RjaPk0WMpLDBFsFU-OhCeeXbebVdfn-3eHEv6Zcs_k20yj4NcfhhbluQOwVCOoxXOO40FVxosASGcckJKTL0Nzevt6nUs-fcp1MXs86nM7X1DBQclJAXdtti65UqutYT4fJVg85CMWZMxD8mYp2QadblSKYTwTACXoDRj93lzhWU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549756298</pqid></control><display><type>article</type><title>Traffic-Adaptive CFP Extension for IEEE 802.15.4 DSME MAC in Industrial Wireless Sensor Networks</title><source>IEEE Xplore Open Access Journals</source><creator>Lee, Sang-Woo ; Kwon, Jung-Hyok ; Zhang, Xue ; Kim, Eui-Jik</creator><creatorcontrib>Lee, Sang-Woo ; Kwon, Jung-Hyok ; Zhang, Xue ; Kim, Eui-Jik</creatorcontrib><description>This paper presents a traffic-adaptive contention-free period (CFP) extension (TaCFPext) protocol for IEEE 802.15.4 deterministic and synchronous multichannel extension (DSME) medium access control (MAC), which aims to satisfy the traffic adaptability requirement of industrial wireless sensor networks (IWSNs). The legacy DSME standard has limitations in accommodating highly varying traffic load in IWSNs due to its fixed multi-superframe structure. TaCFPext enables a node to adaptively use a contention access period (CAP) as an extended CFP (extCFP) on the demands of traffic loads in a distributed manner. The node starts TaCFPext when it determines that the CFP of the current multi-superframe is insufficient to accommodate the traffic load. Then, the node selects a CAP to be used as an extCFP, on which it is allocated an extended guaranteed time slot (extGTS). When the traffic load decreases, the extGTS is deallocated before the GTS in CFP, and the extCFP returns to CAP again. An experimental simulation was performed to verify the superiority of TaCFPext. The results demonstrated that TaCFPext outperforms the legacy DSME for aggregate throughput and average delay under various traffic conditions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3093893</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Access control ; CFP extension ; Delays ; DSME MAC ; IEEE 802.15 Standard ; industrial Internet of Things ; industrial wireless sensor network ; Nodes ; Receivers ; Resource management ; Stress concentration ; Telecommunication traffic ; Traffic ; traffic adaptability ; Traffic delay ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE access, 2021, Vol.9, p.94454-94469</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a959de92d7d056998529d4111874f6d1870c3180f64fd065a93710a7dfc95d3d3</citedby><cites>FETCH-LOGICAL-c408t-a959de92d7d056998529d4111874f6d1870c3180f64fd065a93710a7dfc95d3d3</cites><orcidid>0000-0001-6617-6541 ; 0000-0003-4475-8107 ; 0000-0002-1993-1249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9469783$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lee, Sang-Woo</creatorcontrib><creatorcontrib>Kwon, Jung-Hyok</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Kim, Eui-Jik</creatorcontrib><title>Traffic-Adaptive CFP Extension for IEEE 802.15.4 DSME MAC in Industrial Wireless Sensor Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a traffic-adaptive contention-free period (CFP) extension (TaCFPext) protocol for IEEE 802.15.4 deterministic and synchronous multichannel extension (DSME) medium access control (MAC), which aims to satisfy the traffic adaptability requirement of industrial wireless sensor networks (IWSNs). The legacy DSME standard has limitations in accommodating highly varying traffic load in IWSNs due to its fixed multi-superframe structure. TaCFPext enables a node to adaptively use a contention access period (CAP) as an extended CFP (extCFP) on the demands of traffic loads in a distributed manner. The node starts TaCFPext when it determines that the CFP of the current multi-superframe is insufficient to accommodate the traffic load. Then, the node selects a CAP to be used as an extCFP, on which it is allocated an extended guaranteed time slot (extGTS). When the traffic load decreases, the extGTS is deallocated before the GTS in CFP, and the extCFP returns to CAP again. An experimental simulation was performed to verify the superiority of TaCFPext. The results demonstrated that TaCFPext outperforms the legacy DSME for aggregate throughput and average delay under various traffic conditions.</description><subject>Access control</subject><subject>CFP extension</subject><subject>Delays</subject><subject>DSME MAC</subject><subject>IEEE 802.15 Standard</subject><subject>industrial Internet of Things</subject><subject>industrial wireless sensor network</subject><subject>Nodes</subject><subject>Receivers</subject><subject>Resource management</subject><subject>Stress concentration</subject><subject>Telecommunication traffic</subject><subject>Traffic</subject><subject>traffic adaptability</subject><subject>Traffic delay</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtrFEEQhQdRMMT8grw0-Dxj37vrcRknupCosBEf26Yv0us6vXbPRv336WRCsF5OUdR3quB03SXBAyEY3m3GcdrtBoopGRgGpoG96M4okdAzweTL__rX3UWte9xKt5FQZ93322JjTK7feHtc0l1A49UXNP1dwlxTnlHMBW2naUIa04GIgaP3u5sJ3WxGlGa0nf2pLiXZA_qWSjiEWtGukQ36FJY_ufysb7pX0R5quHjS8-7r1XQ7fuyvP3_Yjpvr3nGsl96CAB-AeuWxkABaUPCcEKIVj9I3wY4RjaPk0WMpLDBFsFU-OhCeeXbebVdfn-3eHEv6Zcs_k20yj4NcfhhbluQOwVCOoxXOO40FVxosASGcckJKTL0Nzevt6nUs-fcp1MXs86nM7X1DBQclJAXdtti65UqutYT4fJVg85CMWZMxD8mYp2QadblSKYTwTACXoDRj93lzhWU</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lee, Sang-Woo</creator><creator>Kwon, Jung-Hyok</creator><creator>Zhang, Xue</creator><creator>Kim, Eui-Jik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6617-6541</orcidid><orcidid>https://orcid.org/0000-0003-4475-8107</orcidid><orcidid>https://orcid.org/0000-0002-1993-1249</orcidid></search><sort><creationdate>2021</creationdate><title>Traffic-Adaptive CFP Extension for IEEE 802.15.4 DSME MAC in Industrial Wireless Sensor Networks</title><author>Lee, Sang-Woo ; Kwon, Jung-Hyok ; Zhang, Xue ; Kim, Eui-Jik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a959de92d7d056998529d4111874f6d1870c3180f64fd065a93710a7dfc95d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Access control</topic><topic>CFP extension</topic><topic>Delays</topic><topic>DSME MAC</topic><topic>IEEE 802.15 Standard</topic><topic>industrial Internet of Things</topic><topic>industrial wireless sensor network</topic><topic>Nodes</topic><topic>Receivers</topic><topic>Resource management</topic><topic>Stress concentration</topic><topic>Telecommunication traffic</topic><topic>Traffic</topic><topic>traffic adaptability</topic><topic>Traffic delay</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang-Woo</creatorcontrib><creatorcontrib>Kwon, Jung-Hyok</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Kim, Eui-Jik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang-Woo</au><au>Kwon, Jung-Hyok</au><au>Zhang, Xue</au><au>Kim, Eui-Jik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic-Adaptive CFP Extension for IEEE 802.15.4 DSME MAC in Industrial Wireless Sensor Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>94454</spage><epage>94469</epage><pages>94454-94469</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a traffic-adaptive contention-free period (CFP) extension (TaCFPext) protocol for IEEE 802.15.4 deterministic and synchronous multichannel extension (DSME) medium access control (MAC), which aims to satisfy the traffic adaptability requirement of industrial wireless sensor networks (IWSNs). The legacy DSME standard has limitations in accommodating highly varying traffic load in IWSNs due to its fixed multi-superframe structure. TaCFPext enables a node to adaptively use a contention access period (CAP) as an extended CFP (extCFP) on the demands of traffic loads in a distributed manner. The node starts TaCFPext when it determines that the CFP of the current multi-superframe is insufficient to accommodate the traffic load. Then, the node selects a CAP to be used as an extCFP, on which it is allocated an extended guaranteed time slot (extGTS). When the traffic load decreases, the extGTS is deallocated before the GTS in CFP, and the extCFP returns to CAP again. An experimental simulation was performed to verify the superiority of TaCFPext. The results demonstrated that TaCFPext outperforms the legacy DSME for aggregate throughput and average delay under various traffic conditions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3093893</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6617-6541</orcidid><orcidid>https://orcid.org/0000-0003-4475-8107</orcidid><orcidid>https://orcid.org/0000-0002-1993-1249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.94454-94469
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3093893
source IEEE Xplore Open Access Journals
subjects Access control
CFP extension
Delays
DSME MAC
IEEE 802.15 Standard
industrial Internet of Things
industrial wireless sensor network
Nodes
Receivers
Resource management
Stress concentration
Telecommunication traffic
Traffic
traffic adaptability
Traffic delay
Wireless networks
Wireless sensor networks
title Traffic-Adaptive CFP Extension for IEEE 802.15.4 DSME MAC in Industrial Wireless Sensor Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic-Adaptive%20CFP%20Extension%20for%20IEEE%20802.15.4%20DSME%20MAC%20in%20Industrial%20Wireless%20Sensor%20Networks&rft.jtitle=IEEE%20access&rft.au=Lee,%20Sang-Woo&rft.date=2021&rft.volume=9&rft.spage=94454&rft.epage=94469&rft.pages=94454-94469&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3093893&rft_dat=%3Cproquest_cross%3E2549756298%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-a959de92d7d056998529d4111874f6d1870c3180f64fd065a93710a7dfc95d3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2549756298&rft_id=info:pmid/&rft_ieee_id=9469783&rfr_iscdi=true