Loading…
An Efficient Algorithm to Highlight Details in Infrared and Visible Image Fusion
To improve the fusion quality of infrared and visible images and highlight target and scene details, in this paper, a novel infrared and visible image fusion algorithm is proposed. First, a method for combining dynamic range compression and contrast restoration based on a guided filter is adopted to...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.110223-110235 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3 |
container_end_page | 110235 |
container_issue | |
container_start_page | 110223 |
container_title | IEEE access |
container_volume | 9 |
creator | Liu, Peijin Zhang, Licai Li, Mingyang Zhang, Xiangrui |
description | To improve the fusion quality of infrared and visible images and highlight target and scene details, in this paper, a novel infrared and visible image fusion algorithm is proposed. First, a method for combining dynamic range compression and contrast restoration based on a guided filter is adopted to enhance the contrast of visible source images. Second, guided filter-based image multiscale decomposition is used to decompose images into base layers and detail layers. For base layer fusion, a fusion strategy based on the detail and energy measurements of the source image is proposed to determine the pixel value of the fused image base layer such that the energy loss of the fusion can be reduced and the texture detail features are highlighted to obtain more source image details. Finally, recursive separation and weighted histogram equalization methods are applied to optimize the fused image. Experimental results show that the fusion algorithm and fusion strategy proposed in this paper can effectively improve fusion image clarity, while more detailed target and scene information can still be retained. |
doi_str_mv | 10.1109/ACCESS.2021.3103111 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3103111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9508385</ieee_id><doaj_id>oai_doaj_org_article_11b993f9459f416b82808cd638260f93</doaj_id><sourcerecordid>2560141293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX-Bl4Dn1kzSpMmx1NYWBAU_riG7mdSU7UaT7cF_b-xKcWCYYZj33gyvqm6AjgGovpvN54uXlzGjDMYcKAeAk-qCgdQjLrg8_defV9c5b2kJVUZielE9zzqy8D40AbuezNpNTKH_2JE-klXYfLQle3KPvQ1tJqEj684nm9AR2znyHnKoWyTrnd0gWe5ziN1VdeZtm_H6r15Wb8vF63w1enx6WM9nj6NmQlU_YvXUCamEBUDN_ASYkrWuqQSB2tWKNd7LKUPulCxPOSqc1XyK2jqktfD8sloPvC7arflMYWfTt4k2mMMgpo2xqQ9Niwag1pp7PRG6CMlCrqhqnOSKSeo1L1y3A9dnil97zL3Zxn3qyvmGCUmhXHfY4sNWk2LOCf1RFaj5dcIMTphfJ8yfEwV1M6ACIh4RWlDFleA_X32B2w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560141293</pqid></control><display><type>article</type><title>An Efficient Algorithm to Highlight Details in Infrared and Visible Image Fusion</title><source>IEEE Open Access Journals</source><creator>Liu, Peijin ; Zhang, Licai ; Li, Mingyang ; Zhang, Xiangrui</creator><creatorcontrib>Liu, Peijin ; Zhang, Licai ; Li, Mingyang ; Zhang, Xiangrui</creatorcontrib><description>To improve the fusion quality of infrared and visible images and highlight target and scene details, in this paper, a novel infrared and visible image fusion algorithm is proposed. First, a method for combining dynamic range compression and contrast restoration based on a guided filter is adopted to enhance the contrast of visible source images. Second, guided filter-based image multiscale decomposition is used to decompose images into base layers and detail layers. For base layer fusion, a fusion strategy based on the detail and energy measurements of the source image is proposed to determine the pixel value of the fused image base layer such that the energy loss of the fusion can be reduced and the texture detail features are highlighted to obtain more source image details. Finally, recursive separation and weighted histogram equalization methods are applied to optimize the fused image. Experimental results show that the fusion algorithm and fusion strategy proposed in this paper can effectively improve fusion image clarity, while more detailed target and scene information can still be retained.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3103111</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computer vision ; Decomposition ; Energy dissipation ; Equalization ; Fuses ; fusion strategy ; guided filter ; highlighted details ; Histograms ; Image contrast ; Image edge detection ; Image enhancement ; Image filters ; Image fusion ; Image processing ; Image quality ; Infrared image sensors ; Infrared imagery ; multiscale decomposition ; Sensor fusion ; Target recognition ; Transforms</subject><ispartof>IEEE access, 2021, Vol.9, p.110223-110235</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3</citedby><cites>FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3</cites><orcidid>0000-0002-8743-8552 ; 0000-0001-7556-1812 ; 0000-0002-3399-2152 ; 0000-0002-9868-7052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9508385$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Peijin</creatorcontrib><creatorcontrib>Zhang, Licai</creatorcontrib><creatorcontrib>Li, Mingyang</creatorcontrib><creatorcontrib>Zhang, Xiangrui</creatorcontrib><title>An Efficient Algorithm to Highlight Details in Infrared and Visible Image Fusion</title><title>IEEE access</title><addtitle>Access</addtitle><description>To improve the fusion quality of infrared and visible images and highlight target and scene details, in this paper, a novel infrared and visible image fusion algorithm is proposed. First, a method for combining dynamic range compression and contrast restoration based on a guided filter is adopted to enhance the contrast of visible source images. Second, guided filter-based image multiscale decomposition is used to decompose images into base layers and detail layers. For base layer fusion, a fusion strategy based on the detail and energy measurements of the source image is proposed to determine the pixel value of the fused image base layer such that the energy loss of the fusion can be reduced and the texture detail features are highlighted to obtain more source image details. Finally, recursive separation and weighted histogram equalization methods are applied to optimize the fused image. Experimental results show that the fusion algorithm and fusion strategy proposed in this paper can effectively improve fusion image clarity, while more detailed target and scene information can still be retained.</description><subject>Algorithms</subject><subject>Computer vision</subject><subject>Decomposition</subject><subject>Energy dissipation</subject><subject>Equalization</subject><subject>Fuses</subject><subject>fusion strategy</subject><subject>guided filter</subject><subject>highlighted details</subject><subject>Histograms</subject><subject>Image contrast</subject><subject>Image edge detection</subject><subject>Image enhancement</subject><subject>Image filters</subject><subject>Image fusion</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Infrared image sensors</subject><subject>Infrared imagery</subject><subject>multiscale decomposition</subject><subject>Sensor fusion</subject><subject>Target recognition</subject><subject>Transforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX-Bl4Dn1kzSpMmx1NYWBAU_riG7mdSU7UaT7cF_b-xKcWCYYZj33gyvqm6AjgGovpvN54uXlzGjDMYcKAeAk-qCgdQjLrg8_defV9c5b2kJVUZielE9zzqy8D40AbuezNpNTKH_2JE-klXYfLQle3KPvQ1tJqEj684nm9AR2znyHnKoWyTrnd0gWe5ziN1VdeZtm_H6r15Wb8vF63w1enx6WM9nj6NmQlU_YvXUCamEBUDN_ASYkrWuqQSB2tWKNd7LKUPulCxPOSqc1XyK2jqktfD8sloPvC7arflMYWfTt4k2mMMgpo2xqQ9Niwag1pp7PRG6CMlCrqhqnOSKSeo1L1y3A9dnil97zL3Zxn3qyvmGCUmhXHfY4sNWk2LOCf1RFaj5dcIMTphfJ8yfEwV1M6ACIh4RWlDFleA_X32B2w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Liu, Peijin</creator><creator>Zhang, Licai</creator><creator>Li, Mingyang</creator><creator>Zhang, Xiangrui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8743-8552</orcidid><orcidid>https://orcid.org/0000-0001-7556-1812</orcidid><orcidid>https://orcid.org/0000-0002-3399-2152</orcidid><orcidid>https://orcid.org/0000-0002-9868-7052</orcidid></search><sort><creationdate>2021</creationdate><title>An Efficient Algorithm to Highlight Details in Infrared and Visible Image Fusion</title><author>Liu, Peijin ; Zhang, Licai ; Li, Mingyang ; Zhang, Xiangrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer vision</topic><topic>Decomposition</topic><topic>Energy dissipation</topic><topic>Equalization</topic><topic>Fuses</topic><topic>fusion strategy</topic><topic>guided filter</topic><topic>highlighted details</topic><topic>Histograms</topic><topic>Image contrast</topic><topic>Image edge detection</topic><topic>Image enhancement</topic><topic>Image filters</topic><topic>Image fusion</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Infrared image sensors</topic><topic>Infrared imagery</topic><topic>multiscale decomposition</topic><topic>Sensor fusion</topic><topic>Target recognition</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peijin</creatorcontrib><creatorcontrib>Zhang, Licai</creatorcontrib><creatorcontrib>Li, Mingyang</creatorcontrib><creatorcontrib>Zhang, Xiangrui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Peijin</au><au>Zhang, Licai</au><au>Li, Mingyang</au><au>Zhang, Xiangrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Algorithm to Highlight Details in Infrared and Visible Image Fusion</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>110223</spage><epage>110235</epage><pages>110223-110235</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To improve the fusion quality of infrared and visible images and highlight target and scene details, in this paper, a novel infrared and visible image fusion algorithm is proposed. First, a method for combining dynamic range compression and contrast restoration based on a guided filter is adopted to enhance the contrast of visible source images. Second, guided filter-based image multiscale decomposition is used to decompose images into base layers and detail layers. For base layer fusion, a fusion strategy based on the detail and energy measurements of the source image is proposed to determine the pixel value of the fused image base layer such that the energy loss of the fusion can be reduced and the texture detail features are highlighted to obtain more source image details. Finally, recursive separation and weighted histogram equalization methods are applied to optimize the fused image. Experimental results show that the fusion algorithm and fusion strategy proposed in this paper can effectively improve fusion image clarity, while more detailed target and scene information can still be retained.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3103111</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8743-8552</orcidid><orcidid>https://orcid.org/0000-0001-7556-1812</orcidid><orcidid>https://orcid.org/0000-0002-3399-2152</orcidid><orcidid>https://orcid.org/0000-0002-9868-7052</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.110223-110235 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3103111 |
source | IEEE Open Access Journals |
subjects | Algorithms Computer vision Decomposition Energy dissipation Equalization Fuses fusion strategy guided filter highlighted details Histograms Image contrast Image edge detection Image enhancement Image filters Image fusion Image processing Image quality Infrared image sensors Infrared imagery multiscale decomposition Sensor fusion Target recognition Transforms |
title | An Efficient Algorithm to Highlight Details in Infrared and Visible Image Fusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Algorithm%20to%20Highlight%20Details%20in%20Infrared%20and%20Visible%20Image%20Fusion&rft.jtitle=IEEE%20access&rft.au=Liu,%20Peijin&rft.date=2021&rft.volume=9&rft.spage=110223&rft.epage=110235&rft.pages=110223-110235&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3103111&rft_dat=%3Cproquest_cross%3E2560141293%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560141293&rft_id=info:pmid/&rft_ieee_id=9508385&rfr_iscdi=true |