Loading…

An Efficient Algorithm to Highlight Details in Infrared and Visible Image Fusion

To improve the fusion quality of infrared and visible images and highlight target and scene details, in this paper, a novel infrared and visible image fusion algorithm is proposed. First, a method for combining dynamic range compression and contrast restoration based on a guided filter is adopted to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.110223-110235
Main Authors: Liu, Peijin, Zhang, Licai, Li, Mingyang, Zhang, Xiangrui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3
cites cdi_FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3
container_end_page 110235
container_issue
container_start_page 110223
container_title IEEE access
container_volume 9
creator Liu, Peijin
Zhang, Licai
Li, Mingyang
Zhang, Xiangrui
description To improve the fusion quality of infrared and visible images and highlight target and scene details, in this paper, a novel infrared and visible image fusion algorithm is proposed. First, a method for combining dynamic range compression and contrast restoration based on a guided filter is adopted to enhance the contrast of visible source images. Second, guided filter-based image multiscale decomposition is used to decompose images into base layers and detail layers. For base layer fusion, a fusion strategy based on the detail and energy measurements of the source image is proposed to determine the pixel value of the fused image base layer such that the energy loss of the fusion can be reduced and the texture detail features are highlighted to obtain more source image details. Finally, recursive separation and weighted histogram equalization methods are applied to optimize the fused image. Experimental results show that the fusion algorithm and fusion strategy proposed in this paper can effectively improve fusion image clarity, while more detailed target and scene information can still be retained.
doi_str_mv 10.1109/ACCESS.2021.3103111
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3103111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9508385</ieee_id><doaj_id>oai_doaj_org_article_11b993f9459f416b82808cd638260f93</doaj_id><sourcerecordid>2560141293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX-Bl4Dn1kzSpMmx1NYWBAU_riG7mdSU7UaT7cF_b-xKcWCYYZj33gyvqm6AjgGovpvN54uXlzGjDMYcKAeAk-qCgdQjLrg8_defV9c5b2kJVUZielE9zzqy8D40AbuezNpNTKH_2JE-klXYfLQle3KPvQ1tJqEj684nm9AR2znyHnKoWyTrnd0gWe5ziN1VdeZtm_H6r15Wb8vF63w1enx6WM9nj6NmQlU_YvXUCamEBUDN_ASYkrWuqQSB2tWKNd7LKUPulCxPOSqc1XyK2jqktfD8sloPvC7arflMYWfTt4k2mMMgpo2xqQ9Niwag1pp7PRG6CMlCrqhqnOSKSeo1L1y3A9dnil97zL3Zxn3qyvmGCUmhXHfY4sNWk2LOCf1RFaj5dcIMTphfJ8yfEwV1M6ACIh4RWlDFleA_X32B2w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560141293</pqid></control><display><type>article</type><title>An Efficient Algorithm to Highlight Details in Infrared and Visible Image Fusion</title><source>IEEE Open Access Journals</source><creator>Liu, Peijin ; Zhang, Licai ; Li, Mingyang ; Zhang, Xiangrui</creator><creatorcontrib>Liu, Peijin ; Zhang, Licai ; Li, Mingyang ; Zhang, Xiangrui</creatorcontrib><description>To improve the fusion quality of infrared and visible images and highlight target and scene details, in this paper, a novel infrared and visible image fusion algorithm is proposed. First, a method for combining dynamic range compression and contrast restoration based on a guided filter is adopted to enhance the contrast of visible source images. Second, guided filter-based image multiscale decomposition is used to decompose images into base layers and detail layers. For base layer fusion, a fusion strategy based on the detail and energy measurements of the source image is proposed to determine the pixel value of the fused image base layer such that the energy loss of the fusion can be reduced and the texture detail features are highlighted to obtain more source image details. Finally, recursive separation and weighted histogram equalization methods are applied to optimize the fused image. Experimental results show that the fusion algorithm and fusion strategy proposed in this paper can effectively improve fusion image clarity, while more detailed target and scene information can still be retained.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3103111</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computer vision ; Decomposition ; Energy dissipation ; Equalization ; Fuses ; fusion strategy ; guided filter ; highlighted details ; Histograms ; Image contrast ; Image edge detection ; Image enhancement ; Image filters ; Image fusion ; Image processing ; Image quality ; Infrared image sensors ; Infrared imagery ; multiscale decomposition ; Sensor fusion ; Target recognition ; Transforms</subject><ispartof>IEEE access, 2021, Vol.9, p.110223-110235</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3</citedby><cites>FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3</cites><orcidid>0000-0002-8743-8552 ; 0000-0001-7556-1812 ; 0000-0002-3399-2152 ; 0000-0002-9868-7052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9508385$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Peijin</creatorcontrib><creatorcontrib>Zhang, Licai</creatorcontrib><creatorcontrib>Li, Mingyang</creatorcontrib><creatorcontrib>Zhang, Xiangrui</creatorcontrib><title>An Efficient Algorithm to Highlight Details in Infrared and Visible Image Fusion</title><title>IEEE access</title><addtitle>Access</addtitle><description>To improve the fusion quality of infrared and visible images and highlight target and scene details, in this paper, a novel infrared and visible image fusion algorithm is proposed. First, a method for combining dynamic range compression and contrast restoration based on a guided filter is adopted to enhance the contrast of visible source images. Second, guided filter-based image multiscale decomposition is used to decompose images into base layers and detail layers. For base layer fusion, a fusion strategy based on the detail and energy measurements of the source image is proposed to determine the pixel value of the fused image base layer such that the energy loss of the fusion can be reduced and the texture detail features are highlighted to obtain more source image details. Finally, recursive separation and weighted histogram equalization methods are applied to optimize the fused image. Experimental results show that the fusion algorithm and fusion strategy proposed in this paper can effectively improve fusion image clarity, while more detailed target and scene information can still be retained.</description><subject>Algorithms</subject><subject>Computer vision</subject><subject>Decomposition</subject><subject>Energy dissipation</subject><subject>Equalization</subject><subject>Fuses</subject><subject>fusion strategy</subject><subject>guided filter</subject><subject>highlighted details</subject><subject>Histograms</subject><subject>Image contrast</subject><subject>Image edge detection</subject><subject>Image enhancement</subject><subject>Image filters</subject><subject>Image fusion</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Infrared image sensors</subject><subject>Infrared imagery</subject><subject>multiscale decomposition</subject><subject>Sensor fusion</subject><subject>Target recognition</subject><subject>Transforms</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX-Bl4Dn1kzSpMmx1NYWBAU_riG7mdSU7UaT7cF_b-xKcWCYYZj33gyvqm6AjgGovpvN54uXlzGjDMYcKAeAk-qCgdQjLrg8_defV9c5b2kJVUZielE9zzqy8D40AbuezNpNTKH_2JE-klXYfLQle3KPvQ1tJqEj684nm9AR2znyHnKoWyTrnd0gWe5ziN1VdeZtm_H6r15Wb8vF63w1enx6WM9nj6NmQlU_YvXUCamEBUDN_ASYkrWuqQSB2tWKNd7LKUPulCxPOSqc1XyK2jqktfD8sloPvC7arflMYWfTt4k2mMMgpo2xqQ9Niwag1pp7PRG6CMlCrqhqnOSKSeo1L1y3A9dnil97zL3Zxn3qyvmGCUmhXHfY4sNWk2LOCf1RFaj5dcIMTphfJ8yfEwV1M6ACIh4RWlDFleA_X32B2w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Liu, Peijin</creator><creator>Zhang, Licai</creator><creator>Li, Mingyang</creator><creator>Zhang, Xiangrui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8743-8552</orcidid><orcidid>https://orcid.org/0000-0001-7556-1812</orcidid><orcidid>https://orcid.org/0000-0002-3399-2152</orcidid><orcidid>https://orcid.org/0000-0002-9868-7052</orcidid></search><sort><creationdate>2021</creationdate><title>An Efficient Algorithm to Highlight Details in Infrared and Visible Image Fusion</title><author>Liu, Peijin ; Zhang, Licai ; Li, Mingyang ; Zhang, Xiangrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer vision</topic><topic>Decomposition</topic><topic>Energy dissipation</topic><topic>Equalization</topic><topic>Fuses</topic><topic>fusion strategy</topic><topic>guided filter</topic><topic>highlighted details</topic><topic>Histograms</topic><topic>Image contrast</topic><topic>Image edge detection</topic><topic>Image enhancement</topic><topic>Image filters</topic><topic>Image fusion</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Infrared image sensors</topic><topic>Infrared imagery</topic><topic>multiscale decomposition</topic><topic>Sensor fusion</topic><topic>Target recognition</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peijin</creatorcontrib><creatorcontrib>Zhang, Licai</creatorcontrib><creatorcontrib>Li, Mingyang</creatorcontrib><creatorcontrib>Zhang, Xiangrui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Peijin</au><au>Zhang, Licai</au><au>Li, Mingyang</au><au>Zhang, Xiangrui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Algorithm to Highlight Details in Infrared and Visible Image Fusion</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>110223</spage><epage>110235</epage><pages>110223-110235</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To improve the fusion quality of infrared and visible images and highlight target and scene details, in this paper, a novel infrared and visible image fusion algorithm is proposed. First, a method for combining dynamic range compression and contrast restoration based on a guided filter is adopted to enhance the contrast of visible source images. Second, guided filter-based image multiscale decomposition is used to decompose images into base layers and detail layers. For base layer fusion, a fusion strategy based on the detail and energy measurements of the source image is proposed to determine the pixel value of the fused image base layer such that the energy loss of the fusion can be reduced and the texture detail features are highlighted to obtain more source image details. Finally, recursive separation and weighted histogram equalization methods are applied to optimize the fused image. Experimental results show that the fusion algorithm and fusion strategy proposed in this paper can effectively improve fusion image clarity, while more detailed target and scene information can still be retained.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3103111</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8743-8552</orcidid><orcidid>https://orcid.org/0000-0001-7556-1812</orcidid><orcidid>https://orcid.org/0000-0002-3399-2152</orcidid><orcidid>https://orcid.org/0000-0002-9868-7052</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.110223-110235
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3103111
source IEEE Open Access Journals
subjects Algorithms
Computer vision
Decomposition
Energy dissipation
Equalization
Fuses
fusion strategy
guided filter
highlighted details
Histograms
Image contrast
Image edge detection
Image enhancement
Image filters
Image fusion
Image processing
Image quality
Infrared image sensors
Infrared imagery
multiscale decomposition
Sensor fusion
Target recognition
Transforms
title An Efficient Algorithm to Highlight Details in Infrared and Visible Image Fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Algorithm%20to%20Highlight%20Details%20in%20Infrared%20and%20Visible%20Image%20Fusion&rft.jtitle=IEEE%20access&rft.au=Liu,%20Peijin&rft.date=2021&rft.volume=9&rft.spage=110223&rft.epage=110235&rft.pages=110223-110235&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3103111&rft_dat=%3Cproquest_cross%3E2560141293%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-2b7d5685a11e92f41286b9b0615e9db82cff672e3d86310d05da937e9ade0b5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560141293&rft_id=info:pmid/&rft_ieee_id=9508385&rfr_iscdi=true