Loading…
HI-FFT: Heterogeneous Parallel In-place Algorithm for Large-scale 2D-FFT
Fast Fourier Transform (FFT) is a fundamental operation for 2D data in various applications. To accelerate large-scale 2D-FFT computation, we propose a Heterogeneous parallel In-place 2D-FFT algorithm, HI-FFT. Our novel work decomposition method makes it possible to run our parallel algorithm on the...
Saved in:
Published in: | IEEE access 2021-01, Vol.9, p.1-1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 9 |
creator | Kang, Homin Lee, Jaehong Kim, Duksu |
description | Fast Fourier Transform (FFT) is a fundamental operation for 2D data in various applications. To accelerate large-scale 2D-FFT computation, we propose a Heterogeneous parallel In-place 2D-FFT algorithm, HI-FFT. Our novel work decomposition method makes it possible to run our parallel algorithm on the original data (i.e., in-place), unlike prior parallel algorithms that require additional memory space (i.e., out-of-place) to guarantee independence among sub-tasks. Our work decomposition method also removes the duplicated operations on the out-of-place approaches. Using our decomposition method, we introduced an in-place heterogeneous parallel algorithm that utilizes both multi-core CPU and GPU simultaneously. To maximize the utilization efficiency of the computing resources, we also propose a priority-based dynamic scheduling method.We compared the performance of seven different 2D-FFT algorithms, including ours, for large-scale 2D-FFT problems whose sizes varied from 20K2 to 120K2. As a result, we found that our method achieved up to 2.92 and 4.42 times higher performance than the conventional homogeneous parallel algorithms based on the state-of-the-art CPU and GPU libraries, respectively. Also, our method showed up to 2.27 times higher performance than the prior heterogeneous algorithms while requiring two times less memory space. To check the benefit of our HI-FFT on an actual application, we applied it to a CGH (Computer Generated Holography) process. We found that it successfully reduces the hologram generation time. These results demonstrate the advantage of our approach for large-scale 2D-FFT computation. |
doi_str_mv | 10.1109/ACCESS.2021.3108404 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3108404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9524622</ieee_id><doaj_id>oai_doaj_org_article_1a7dd4daae194ff7a68e7600aae5e708</doaj_id><sourcerecordid>2568777773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3</originalsourceid><addsrcrecordid>eNpNUU1rwkAUDKWFSusv8BLoOXZ332Y_epNUqyC0oD0vm81LGomu3cRD_31jI9K5vMcwM-_BRNGEkimlRD_Psmy-2UwZYXQKlChO-E00YlToBFIQt__2-2jctjvSQ_VUKkfRcrlKFovtS7zEDoOv8ID-1MYfNtimwSZeHZJjYx3Gs6byoe6-9nHpQ7y2ocKkdbbBmL2eEx6ju9I2LY4v8yH6XMy32TJZv7-tstk6cZyoLuEArBCpAJTalU6mOZFUlwCOMUFzWdCcKXBKKhApp05bDcxBrpzONYcCHqLVkFt4uzPHUO9t-DHe1uaP8KEyNnS1a9BQK4uCF9Yi1bwspRUKpSCkJ1KURPVZT0PWMfjvE7ad2flTOPTvG5YKJc-AXgWDygXftgHL61VKzLkBMzRgzg2YSwO9azK4akS8OnTKuGAMfgElnX5X</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568777773</pqid></control><display><type>article</type><title>HI-FFT: Heterogeneous Parallel In-place Algorithm for Large-scale 2D-FFT</title><source>IEEE Open Access Journals</source><creator>Kang, Homin ; Lee, Jaehong ; Kim, Duksu</creator><creatorcontrib>Kang, Homin ; Lee, Jaehong ; Kim, Duksu</creatorcontrib><description>Fast Fourier Transform (FFT) is a fundamental operation for 2D data in various applications. To accelerate large-scale 2D-FFT computation, we propose a Heterogeneous parallel In-place 2D-FFT algorithm, HI-FFT. Our novel work decomposition method makes it possible to run our parallel algorithm on the original data (i.e., in-place), unlike prior parallel algorithms that require additional memory space (i.e., out-of-place) to guarantee independence among sub-tasks. Our work decomposition method also removes the duplicated operations on the out-of-place approaches. Using our decomposition method, we introduced an in-place heterogeneous parallel algorithm that utilizes both multi-core CPU and GPU simultaneously. To maximize the utilization efficiency of the computing resources, we also propose a priority-based dynamic scheduling method.We compared the performance of seven different 2D-FFT algorithms, including ours, for large-scale 2D-FFT problems whose sizes varied from 20K2 to 120K2. As a result, we found that our method achieved up to 2.92 and 4.42 times higher performance than the conventional homogeneous parallel algorithms based on the state-of-the-art CPU and GPU libraries, respectively. Also, our method showed up to 2.27 times higher performance than the prior heterogeneous algorithms while requiring two times less memory space. To check the benefit of our HI-FFT on an actual application, we applied it to a CGH (Computer Generated Holography) process. We found that it successfully reduces the hologram generation time. These results demonstrate the advantage of our approach for large-scale 2D-FFT computation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3108404</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>2D-FFT ; Algorithms ; Central processing units ; Computation ; Computer memory ; CPU ; CPUs ; Decomposition ; Discrete Fourier transforms ; Fast Fourier transformations ; Fourier transforms ; GPU ; Graphics processing units ; Heterogeneous ; Heterogeneous networks ; In-place ; Libraries ; Matrix decomposition ; Memory management ; Parallel ; Parallel algorithms ; Priority scheduling</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3</citedby><cites>FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3</cites><orcidid>0000-0002-9075-3983 ; 0000-0002-8311-5975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9524622$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Kang, Homin</creatorcontrib><creatorcontrib>Lee, Jaehong</creatorcontrib><creatorcontrib>Kim, Duksu</creatorcontrib><title>HI-FFT: Heterogeneous Parallel In-place Algorithm for Large-scale 2D-FFT</title><title>IEEE access</title><addtitle>Access</addtitle><description>Fast Fourier Transform (FFT) is a fundamental operation for 2D data in various applications. To accelerate large-scale 2D-FFT computation, we propose a Heterogeneous parallel In-place 2D-FFT algorithm, HI-FFT. Our novel work decomposition method makes it possible to run our parallel algorithm on the original data (i.e., in-place), unlike prior parallel algorithms that require additional memory space (i.e., out-of-place) to guarantee independence among sub-tasks. Our work decomposition method also removes the duplicated operations on the out-of-place approaches. Using our decomposition method, we introduced an in-place heterogeneous parallel algorithm that utilizes both multi-core CPU and GPU simultaneously. To maximize the utilization efficiency of the computing resources, we also propose a priority-based dynamic scheduling method.We compared the performance of seven different 2D-FFT algorithms, including ours, for large-scale 2D-FFT problems whose sizes varied from 20K2 to 120K2. As a result, we found that our method achieved up to 2.92 and 4.42 times higher performance than the conventional homogeneous parallel algorithms based on the state-of-the-art CPU and GPU libraries, respectively. Also, our method showed up to 2.27 times higher performance than the prior heterogeneous algorithms while requiring two times less memory space. To check the benefit of our HI-FFT on an actual application, we applied it to a CGH (Computer Generated Holography) process. We found that it successfully reduces the hologram generation time. These results demonstrate the advantage of our approach for large-scale 2D-FFT computation.</description><subject>2D-FFT</subject><subject>Algorithms</subject><subject>Central processing units</subject><subject>Computation</subject><subject>Computer memory</subject><subject>CPU</subject><subject>CPUs</subject><subject>Decomposition</subject><subject>Discrete Fourier transforms</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>GPU</subject><subject>Graphics processing units</subject><subject>Heterogeneous</subject><subject>Heterogeneous networks</subject><subject>In-place</subject><subject>Libraries</subject><subject>Matrix decomposition</subject><subject>Memory management</subject><subject>Parallel</subject><subject>Parallel algorithms</subject><subject>Priority scheduling</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAUDKWFSusv8BLoOXZ332Y_epNUqyC0oD0vm81LGomu3cRD_31jI9K5vMcwM-_BRNGEkimlRD_Psmy-2UwZYXQKlChO-E00YlToBFIQt__2-2jctjvSQ_VUKkfRcrlKFovtS7zEDoOv8ID-1MYfNtimwSZeHZJjYx3Gs6byoe6-9nHpQ7y2ocKkdbbBmL2eEx6ju9I2LY4v8yH6XMy32TJZv7-tstk6cZyoLuEArBCpAJTalU6mOZFUlwCOMUFzWdCcKXBKKhApp05bDcxBrpzONYcCHqLVkFt4uzPHUO9t-DHe1uaP8KEyNnS1a9BQK4uCF9Yi1bwspRUKpSCkJ1KURPVZT0PWMfjvE7ad2flTOPTvG5YKJc-AXgWDygXftgHL61VKzLkBMzRgzg2YSwO9azK4akS8OnTKuGAMfgElnX5X</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Kang, Homin</creator><creator>Lee, Jaehong</creator><creator>Kim, Duksu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9075-3983</orcidid><orcidid>https://orcid.org/0000-0002-8311-5975</orcidid></search><sort><creationdate>20210101</creationdate><title>HI-FFT: Heterogeneous Parallel In-place Algorithm for Large-scale 2D-FFT</title><author>Kang, Homin ; Lee, Jaehong ; Kim, Duksu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D-FFT</topic><topic>Algorithms</topic><topic>Central processing units</topic><topic>Computation</topic><topic>Computer memory</topic><topic>CPU</topic><topic>CPUs</topic><topic>Decomposition</topic><topic>Discrete Fourier transforms</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>GPU</topic><topic>Graphics processing units</topic><topic>Heterogeneous</topic><topic>Heterogeneous networks</topic><topic>In-place</topic><topic>Libraries</topic><topic>Matrix decomposition</topic><topic>Memory management</topic><topic>Parallel</topic><topic>Parallel algorithms</topic><topic>Priority scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Homin</creatorcontrib><creatorcontrib>Lee, Jaehong</creatorcontrib><creatorcontrib>Kim, Duksu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Homin</au><au>Lee, Jaehong</au><au>Kim, Duksu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HI-FFT: Heterogeneous Parallel In-place Algorithm for Large-scale 2D-FFT</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Fast Fourier Transform (FFT) is a fundamental operation for 2D data in various applications. To accelerate large-scale 2D-FFT computation, we propose a Heterogeneous parallel In-place 2D-FFT algorithm, HI-FFT. Our novel work decomposition method makes it possible to run our parallel algorithm on the original data (i.e., in-place), unlike prior parallel algorithms that require additional memory space (i.e., out-of-place) to guarantee independence among sub-tasks. Our work decomposition method also removes the duplicated operations on the out-of-place approaches. Using our decomposition method, we introduced an in-place heterogeneous parallel algorithm that utilizes both multi-core CPU and GPU simultaneously. To maximize the utilization efficiency of the computing resources, we also propose a priority-based dynamic scheduling method.We compared the performance of seven different 2D-FFT algorithms, including ours, for large-scale 2D-FFT problems whose sizes varied from 20K2 to 120K2. As a result, we found that our method achieved up to 2.92 and 4.42 times higher performance than the conventional homogeneous parallel algorithms based on the state-of-the-art CPU and GPU libraries, respectively. Also, our method showed up to 2.27 times higher performance than the prior heterogeneous algorithms while requiring two times less memory space. To check the benefit of our HI-FFT on an actual application, we applied it to a CGH (Computer Generated Holography) process. We found that it successfully reduces the hologram generation time. These results demonstrate the advantage of our approach for large-scale 2D-FFT computation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3108404</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9075-3983</orcidid><orcidid>https://orcid.org/0000-0002-8311-5975</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021-01, Vol.9, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3108404 |
source | IEEE Open Access Journals |
subjects | 2D-FFT Algorithms Central processing units Computation Computer memory CPU CPUs Decomposition Discrete Fourier transforms Fast Fourier transformations Fourier transforms GPU Graphics processing units Heterogeneous Heterogeneous networks In-place Libraries Matrix decomposition Memory management Parallel Parallel algorithms Priority scheduling |
title | HI-FFT: Heterogeneous Parallel In-place Algorithm for Large-scale 2D-FFT |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HI-FFT:%20Heterogeneous%20Parallel%20In-place%20Algorithm%20for%20Large-scale%202D-FFT&rft.jtitle=IEEE%20access&rft.au=Kang,%20Homin&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3108404&rft_dat=%3Cproquest_cross%3E2568777773%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568777773&rft_id=info:pmid/&rft_ieee_id=9524622&rfr_iscdi=true |