Loading…

HI-FFT: Heterogeneous Parallel In-place Algorithm for Large-scale 2D-FFT

Fast Fourier Transform (FFT) is a fundamental operation for 2D data in various applications. To accelerate large-scale 2D-FFT computation, we propose a Heterogeneous parallel In-place 2D-FFT algorithm, HI-FFT. Our novel work decomposition method makes it possible to run our parallel algorithm on the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021-01, Vol.9, p.1-1
Main Authors: Kang, Homin, Lee, Jaehong, Kim, Duksu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3
cites cdi_FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 9
creator Kang, Homin
Lee, Jaehong
Kim, Duksu
description Fast Fourier Transform (FFT) is a fundamental operation for 2D data in various applications. To accelerate large-scale 2D-FFT computation, we propose a Heterogeneous parallel In-place 2D-FFT algorithm, HI-FFT. Our novel work decomposition method makes it possible to run our parallel algorithm on the original data (i.e., in-place), unlike prior parallel algorithms that require additional memory space (i.e., out-of-place) to guarantee independence among sub-tasks. Our work decomposition method also removes the duplicated operations on the out-of-place approaches. Using our decomposition method, we introduced an in-place heterogeneous parallel algorithm that utilizes both multi-core CPU and GPU simultaneously. To maximize the utilization efficiency of the computing resources, we also propose a priority-based dynamic scheduling method.We compared the performance of seven different 2D-FFT algorithms, including ours, for large-scale 2D-FFT problems whose sizes varied from 20K2 to 120K2. As a result, we found that our method achieved up to 2.92 and 4.42 times higher performance than the conventional homogeneous parallel algorithms based on the state-of-the-art CPU and GPU libraries, respectively. Also, our method showed up to 2.27 times higher performance than the prior heterogeneous algorithms while requiring two times less memory space. To check the benefit of our HI-FFT on an actual application, we applied it to a CGH (Computer Generated Holography) process. We found that it successfully reduces the hologram generation time. These results demonstrate the advantage of our approach for large-scale 2D-FFT computation.
doi_str_mv 10.1109/ACCESS.2021.3108404
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3108404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9524622</ieee_id><doaj_id>oai_doaj_org_article_1a7dd4daae194ff7a68e7600aae5e708</doaj_id><sourcerecordid>2568777773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3</originalsourceid><addsrcrecordid>eNpNUU1rwkAUDKWFSusv8BLoOXZ332Y_epNUqyC0oD0vm81LGomu3cRD_31jI9K5vMcwM-_BRNGEkimlRD_Psmy-2UwZYXQKlChO-E00YlToBFIQt__2-2jctjvSQ_VUKkfRcrlKFovtS7zEDoOv8ID-1MYfNtimwSZeHZJjYx3Gs6byoe6-9nHpQ7y2ocKkdbbBmL2eEx6ju9I2LY4v8yH6XMy32TJZv7-tstk6cZyoLuEArBCpAJTalU6mOZFUlwCOMUFzWdCcKXBKKhApp05bDcxBrpzONYcCHqLVkFt4uzPHUO9t-DHe1uaP8KEyNnS1a9BQK4uCF9Yi1bwspRUKpSCkJ1KURPVZT0PWMfjvE7ad2flTOPTvG5YKJc-AXgWDygXftgHL61VKzLkBMzRgzg2YSwO9azK4akS8OnTKuGAMfgElnX5X</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568777773</pqid></control><display><type>article</type><title>HI-FFT: Heterogeneous Parallel In-place Algorithm for Large-scale 2D-FFT</title><source>IEEE Open Access Journals</source><creator>Kang, Homin ; Lee, Jaehong ; Kim, Duksu</creator><creatorcontrib>Kang, Homin ; Lee, Jaehong ; Kim, Duksu</creatorcontrib><description>Fast Fourier Transform (FFT) is a fundamental operation for 2D data in various applications. To accelerate large-scale 2D-FFT computation, we propose a Heterogeneous parallel In-place 2D-FFT algorithm, HI-FFT. Our novel work decomposition method makes it possible to run our parallel algorithm on the original data (i.e., in-place), unlike prior parallel algorithms that require additional memory space (i.e., out-of-place) to guarantee independence among sub-tasks. Our work decomposition method also removes the duplicated operations on the out-of-place approaches. Using our decomposition method, we introduced an in-place heterogeneous parallel algorithm that utilizes both multi-core CPU and GPU simultaneously. To maximize the utilization efficiency of the computing resources, we also propose a priority-based dynamic scheduling method.We compared the performance of seven different 2D-FFT algorithms, including ours, for large-scale 2D-FFT problems whose sizes varied from 20K2 to 120K2. As a result, we found that our method achieved up to 2.92 and 4.42 times higher performance than the conventional homogeneous parallel algorithms based on the state-of-the-art CPU and GPU libraries, respectively. Also, our method showed up to 2.27 times higher performance than the prior heterogeneous algorithms while requiring two times less memory space. To check the benefit of our HI-FFT on an actual application, we applied it to a CGH (Computer Generated Holography) process. We found that it successfully reduces the hologram generation time. These results demonstrate the advantage of our approach for large-scale 2D-FFT computation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3108404</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>2D-FFT ; Algorithms ; Central processing units ; Computation ; Computer memory ; CPU ; CPUs ; Decomposition ; Discrete Fourier transforms ; Fast Fourier transformations ; Fourier transforms ; GPU ; Graphics processing units ; Heterogeneous ; Heterogeneous networks ; In-place ; Libraries ; Matrix decomposition ; Memory management ; Parallel ; Parallel algorithms ; Priority scheduling</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3</citedby><cites>FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3</cites><orcidid>0000-0002-9075-3983 ; 0000-0002-8311-5975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9524622$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Kang, Homin</creatorcontrib><creatorcontrib>Lee, Jaehong</creatorcontrib><creatorcontrib>Kim, Duksu</creatorcontrib><title>HI-FFT: Heterogeneous Parallel In-place Algorithm for Large-scale 2D-FFT</title><title>IEEE access</title><addtitle>Access</addtitle><description>Fast Fourier Transform (FFT) is a fundamental operation for 2D data in various applications. To accelerate large-scale 2D-FFT computation, we propose a Heterogeneous parallel In-place 2D-FFT algorithm, HI-FFT. Our novel work decomposition method makes it possible to run our parallel algorithm on the original data (i.e., in-place), unlike prior parallel algorithms that require additional memory space (i.e., out-of-place) to guarantee independence among sub-tasks. Our work decomposition method also removes the duplicated operations on the out-of-place approaches. Using our decomposition method, we introduced an in-place heterogeneous parallel algorithm that utilizes both multi-core CPU and GPU simultaneously. To maximize the utilization efficiency of the computing resources, we also propose a priority-based dynamic scheduling method.We compared the performance of seven different 2D-FFT algorithms, including ours, for large-scale 2D-FFT problems whose sizes varied from 20K2 to 120K2. As a result, we found that our method achieved up to 2.92 and 4.42 times higher performance than the conventional homogeneous parallel algorithms based on the state-of-the-art CPU and GPU libraries, respectively. Also, our method showed up to 2.27 times higher performance than the prior heterogeneous algorithms while requiring two times less memory space. To check the benefit of our HI-FFT on an actual application, we applied it to a CGH (Computer Generated Holography) process. We found that it successfully reduces the hologram generation time. These results demonstrate the advantage of our approach for large-scale 2D-FFT computation.</description><subject>2D-FFT</subject><subject>Algorithms</subject><subject>Central processing units</subject><subject>Computation</subject><subject>Computer memory</subject><subject>CPU</subject><subject>CPUs</subject><subject>Decomposition</subject><subject>Discrete Fourier transforms</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>GPU</subject><subject>Graphics processing units</subject><subject>Heterogeneous</subject><subject>Heterogeneous networks</subject><subject>In-place</subject><subject>Libraries</subject><subject>Matrix decomposition</subject><subject>Memory management</subject><subject>Parallel</subject><subject>Parallel algorithms</subject><subject>Priority scheduling</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAUDKWFSusv8BLoOXZ332Y_epNUqyC0oD0vm81LGomu3cRD_31jI9K5vMcwM-_BRNGEkimlRD_Psmy-2UwZYXQKlChO-E00YlToBFIQt__2-2jctjvSQ_VUKkfRcrlKFovtS7zEDoOv8ID-1MYfNtimwSZeHZJjYx3Gs6byoe6-9nHpQ7y2ocKkdbbBmL2eEx6ju9I2LY4v8yH6XMy32TJZv7-tstk6cZyoLuEArBCpAJTalU6mOZFUlwCOMUFzWdCcKXBKKhApp05bDcxBrpzONYcCHqLVkFt4uzPHUO9t-DHe1uaP8KEyNnS1a9BQK4uCF9Yi1bwspRUKpSCkJ1KURPVZT0PWMfjvE7ad2flTOPTvG5YKJc-AXgWDygXftgHL61VKzLkBMzRgzg2YSwO9azK4akS8OnTKuGAMfgElnX5X</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Kang, Homin</creator><creator>Lee, Jaehong</creator><creator>Kim, Duksu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9075-3983</orcidid><orcidid>https://orcid.org/0000-0002-8311-5975</orcidid></search><sort><creationdate>20210101</creationdate><title>HI-FFT: Heterogeneous Parallel In-place Algorithm for Large-scale 2D-FFT</title><author>Kang, Homin ; Lee, Jaehong ; Kim, Duksu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D-FFT</topic><topic>Algorithms</topic><topic>Central processing units</topic><topic>Computation</topic><topic>Computer memory</topic><topic>CPU</topic><topic>CPUs</topic><topic>Decomposition</topic><topic>Discrete Fourier transforms</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>GPU</topic><topic>Graphics processing units</topic><topic>Heterogeneous</topic><topic>Heterogeneous networks</topic><topic>In-place</topic><topic>Libraries</topic><topic>Matrix decomposition</topic><topic>Memory management</topic><topic>Parallel</topic><topic>Parallel algorithms</topic><topic>Priority scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Homin</creatorcontrib><creatorcontrib>Lee, Jaehong</creatorcontrib><creatorcontrib>Kim, Duksu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Homin</au><au>Lee, Jaehong</au><au>Kim, Duksu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HI-FFT: Heterogeneous Parallel In-place Algorithm for Large-scale 2D-FFT</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Fast Fourier Transform (FFT) is a fundamental operation for 2D data in various applications. To accelerate large-scale 2D-FFT computation, we propose a Heterogeneous parallel In-place 2D-FFT algorithm, HI-FFT. Our novel work decomposition method makes it possible to run our parallel algorithm on the original data (i.e., in-place), unlike prior parallel algorithms that require additional memory space (i.e., out-of-place) to guarantee independence among sub-tasks. Our work decomposition method also removes the duplicated operations on the out-of-place approaches. Using our decomposition method, we introduced an in-place heterogeneous parallel algorithm that utilizes both multi-core CPU and GPU simultaneously. To maximize the utilization efficiency of the computing resources, we also propose a priority-based dynamic scheduling method.We compared the performance of seven different 2D-FFT algorithms, including ours, for large-scale 2D-FFT problems whose sizes varied from 20K2 to 120K2. As a result, we found that our method achieved up to 2.92 and 4.42 times higher performance than the conventional homogeneous parallel algorithms based on the state-of-the-art CPU and GPU libraries, respectively. Also, our method showed up to 2.27 times higher performance than the prior heterogeneous algorithms while requiring two times less memory space. To check the benefit of our HI-FFT on an actual application, we applied it to a CGH (Computer Generated Holography) process. We found that it successfully reduces the hologram generation time. These results demonstrate the advantage of our approach for large-scale 2D-FFT computation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3108404</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9075-3983</orcidid><orcidid>https://orcid.org/0000-0002-8311-5975</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021-01, Vol.9, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3108404
source IEEE Open Access Journals
subjects 2D-FFT
Algorithms
Central processing units
Computation
Computer memory
CPU
CPUs
Decomposition
Discrete Fourier transforms
Fast Fourier transformations
Fourier transforms
GPU
Graphics processing units
Heterogeneous
Heterogeneous networks
In-place
Libraries
Matrix decomposition
Memory management
Parallel
Parallel algorithms
Priority scheduling
title HI-FFT: Heterogeneous Parallel In-place Algorithm for Large-scale 2D-FFT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HI-FFT:%20Heterogeneous%20Parallel%20In-place%20Algorithm%20for%20Large-scale%202D-FFT&rft.jtitle=IEEE%20access&rft.au=Kang,%20Homin&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3108404&rft_dat=%3Cproquest_cross%3E2568777773%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-4332d6563e79cfc75b0719f33c2261b7d1b283c87836541c9a932c3b8c9b943d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2568777773&rft_id=info:pmid/&rft_ieee_id=9524622&rfr_iscdi=true