Loading…

Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview

In the era of the Internet of Things (IoT) and Industry 4.0, the indoor usage of smart devices is expected to increase, thereby making their location information more important. Based on various practical issues related to large delays, high design cost, and limited performance, conventional localiz...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.127150-127174
Main Authors: Singh, Navneet, Choe, Sangho, Punmiya, Rajiv
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253
cites cdi_FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253
container_end_page 127174
container_issue
container_start_page 127150
container_title IEEE access
container_volume 9
creator Singh, Navneet
Choe, Sangho
Punmiya, Rajiv
description In the era of the Internet of Things (IoT) and Industry 4.0, the indoor usage of smart devices is expected to increase, thereby making their location information more important. Based on various practical issues related to large delays, high design cost, and limited performance, conventional localization techniques are not practical for indoor IoT applications. In recent years, many researchers have proposed a wide range of machine learning (ML)-based indoor localization approaches using Wi-Fi received signal strength indicator (RSSI) fingerprints. This survey attempts to provide a summarized investigation of ML-based Wi-Fi RSSI fingerprinting schemes, including data preprocessing, data augmentation, ML prediction models for indoor localization, and postprocessing in ML, and compare their performance. Any ML-based study is heavily reliant on datasets. Therefore, we dedicate a significant portion of this survey to the discussion of dataset collection and open-source datasets. To provide good direction for future research, we discuss the current challenges and potential solutions related to ML-based indoor localization systems.
doi_str_mv 10.1109/ACCESS.2021.3111083
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3111083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9531633</ieee_id><doaj_id>oai_doaj_org_article_0e93578ca9f04e3d80c0470068ae756d</doaj_id><sourcerecordid>2573571282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253</originalsourceid><addsrcrecordid>eNpNUcFKAzEUXERBUb_AS8Dz1iRvk816q8VqoSJYi8eQJm81pW40WRX9elNXxHfJy2RmMjBFccLoiDHanI0nk8vFYsQpZyNgGVKwUxxwJpsSBMjdf_t-cZzSmuZRGRL1QbG8MfbJd0jmaGLnu0dyYRI6MutcCJHMgzUb_2V6HzqyTNv3B19OPblbLGZkmu8YX6Lv-nROxh25fcf47vHjqNhrzSbh8e95WCynl_eT63J-ezWbjOelrajqS-Ys2ralTFboHFbCQgUoJOAKHbeNMAYUgJB11SqeuczKZmVWlIpV5biAw2I2-Lpg1joHeTbxUwfj9Q8Q4qM2sfd2g5piA6JW1jQtrRCcopZWNaVSGayFdNnrdPB6ieH1DVOv1-Etdjm-5qLOWsYVzywYWDaGlCK2f78yqrd16KEOva1D_9aRVSeDyiPin6IRwCQAfANWFITf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573571282</pqid></control><display><type>article</type><title>Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview</title><source>IEEE Xplore Open Access Journals</source><creator>Singh, Navneet ; Choe, Sangho ; Punmiya, Rajiv</creator><creatorcontrib>Singh, Navneet ; Choe, Sangho ; Punmiya, Rajiv</creatorcontrib><description>In the era of the Internet of Things (IoT) and Industry 4.0, the indoor usage of smart devices is expected to increase, thereby making their location information more important. Based on various practical issues related to large delays, high design cost, and limited performance, conventional localization techniques are not practical for indoor IoT applications. In recent years, many researchers have proposed a wide range of machine learning (ML)-based indoor localization approaches using Wi-Fi received signal strength indicator (RSSI) fingerprints. This survey attempts to provide a summarized investigation of ML-based Wi-Fi RSSI fingerprinting schemes, including data preprocessing, data augmentation, ML prediction models for indoor localization, and postprocessing in ML, and compare their performance. Any ML-based study is heavily reliant on datasets. Therefore, we dedicate a significant portion of this survey to the discussion of dataset collection and open-source datasets. To provide good direction for future research, we discuss the current challenges and potential solutions related to ML-based indoor localization systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3111083</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Costs ; Datasets ; deep learning ; Electronic devices ; Fingerprint recognition ; Fingerprinting ; Fingerprints ; indoor localization ; Industrial applications ; Internet of Things ; Localization ; Location awareness ; Machine learning ; positioning ; Prediction models ; received signal strength indicator ; Signal strength ; Smart devices ; Wi-Fi ; Wireless fidelity</subject><ispartof>IEEE access, 2021, Vol.9, p.127150-127174</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253</citedby><cites>FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253</cites><orcidid>0000-0002-0264-9714 ; 0000-0002-3940-1608 ; 0000-0001-5294-6154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9531633$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Singh, Navneet</creatorcontrib><creatorcontrib>Choe, Sangho</creatorcontrib><creatorcontrib>Punmiya, Rajiv</creatorcontrib><title>Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the era of the Internet of Things (IoT) and Industry 4.0, the indoor usage of smart devices is expected to increase, thereby making their location information more important. Based on various practical issues related to large delays, high design cost, and limited performance, conventional localization techniques are not practical for indoor IoT applications. In recent years, many researchers have proposed a wide range of machine learning (ML)-based indoor localization approaches using Wi-Fi received signal strength indicator (RSSI) fingerprints. This survey attempts to provide a summarized investigation of ML-based Wi-Fi RSSI fingerprinting schemes, including data preprocessing, data augmentation, ML prediction models for indoor localization, and postprocessing in ML, and compare their performance. Any ML-based study is heavily reliant on datasets. Therefore, we dedicate a significant portion of this survey to the discussion of dataset collection and open-source datasets. To provide good direction for future research, we discuss the current challenges and potential solutions related to ML-based indoor localization systems.</description><subject>Costs</subject><subject>Datasets</subject><subject>deep learning</subject><subject>Electronic devices</subject><subject>Fingerprint recognition</subject><subject>Fingerprinting</subject><subject>Fingerprints</subject><subject>indoor localization</subject><subject>Industrial applications</subject><subject>Internet of Things</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Machine learning</subject><subject>positioning</subject><subject>Prediction models</subject><subject>received signal strength indicator</subject><subject>Signal strength</subject><subject>Smart devices</subject><subject>Wi-Fi</subject><subject>Wireless fidelity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFKAzEUXERBUb_AS8Dz1iRvk816q8VqoSJYi8eQJm81pW40WRX9elNXxHfJy2RmMjBFccLoiDHanI0nk8vFYsQpZyNgGVKwUxxwJpsSBMjdf_t-cZzSmuZRGRL1QbG8MfbJd0jmaGLnu0dyYRI6MutcCJHMgzUb_2V6HzqyTNv3B19OPblbLGZkmu8YX6Lv-nROxh25fcf47vHjqNhrzSbh8e95WCynl_eT63J-ezWbjOelrajqS-Ys2ralTFboHFbCQgUoJOAKHbeNMAYUgJB11SqeuczKZmVWlIpV5biAw2I2-Lpg1joHeTbxUwfj9Q8Q4qM2sfd2g5piA6JW1jQtrRCcopZWNaVSGayFdNnrdPB6ieH1DVOv1-Etdjm-5qLOWsYVzywYWDaGlCK2f78yqrd16KEOva1D_9aRVSeDyiPin6IRwCQAfANWFITf</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Singh, Navneet</creator><creator>Choe, Sangho</creator><creator>Punmiya, Rajiv</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0264-9714</orcidid><orcidid>https://orcid.org/0000-0002-3940-1608</orcidid><orcidid>https://orcid.org/0000-0001-5294-6154</orcidid></search><sort><creationdate>2021</creationdate><title>Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview</title><author>Singh, Navneet ; Choe, Sangho ; Punmiya, Rajiv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Costs</topic><topic>Datasets</topic><topic>deep learning</topic><topic>Electronic devices</topic><topic>Fingerprint recognition</topic><topic>Fingerprinting</topic><topic>Fingerprints</topic><topic>indoor localization</topic><topic>Industrial applications</topic><topic>Internet of Things</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Machine learning</topic><topic>positioning</topic><topic>Prediction models</topic><topic>received signal strength indicator</topic><topic>Signal strength</topic><topic>Smart devices</topic><topic>Wi-Fi</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Navneet</creatorcontrib><creatorcontrib>Choe, Sangho</creatorcontrib><creatorcontrib>Punmiya, Rajiv</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Navneet</au><au>Choe, Sangho</au><au>Punmiya, Rajiv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>127150</spage><epage>127174</epage><pages>127150-127174</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the era of the Internet of Things (IoT) and Industry 4.0, the indoor usage of smart devices is expected to increase, thereby making their location information more important. Based on various practical issues related to large delays, high design cost, and limited performance, conventional localization techniques are not practical for indoor IoT applications. In recent years, many researchers have proposed a wide range of machine learning (ML)-based indoor localization approaches using Wi-Fi received signal strength indicator (RSSI) fingerprints. This survey attempts to provide a summarized investigation of ML-based Wi-Fi RSSI fingerprinting schemes, including data preprocessing, data augmentation, ML prediction models for indoor localization, and postprocessing in ML, and compare their performance. Any ML-based study is heavily reliant on datasets. Therefore, we dedicate a significant portion of this survey to the discussion of dataset collection and open-source datasets. To provide good direction for future research, we discuss the current challenges and potential solutions related to ML-based indoor localization systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3111083</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-0264-9714</orcidid><orcidid>https://orcid.org/0000-0002-3940-1608</orcidid><orcidid>https://orcid.org/0000-0001-5294-6154</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.127150-127174
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2021_3111083
source IEEE Xplore Open Access Journals
subjects Costs
Datasets
deep learning
Electronic devices
Fingerprint recognition
Fingerprinting
Fingerprints
indoor localization
Industrial applications
Internet of Things
Localization
Location awareness
Machine learning
positioning
Prediction models
received signal strength indicator
Signal strength
Smart devices
Wi-Fi
Wireless fidelity
title Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Based%20Indoor%20Localization%20Using%20Wi-Fi%20RSSI%20Fingerprints:%20An%20Overview&rft.jtitle=IEEE%20access&rft.au=Singh,%20Navneet&rft.date=2021&rft.volume=9&rft.spage=127150&rft.epage=127174&rft.pages=127150-127174&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3111083&rft_dat=%3Cproquest_cross%3E2573571282%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2573571282&rft_id=info:pmid/&rft_ieee_id=9531633&rfr_iscdi=true