Loading…
Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview
In the era of the Internet of Things (IoT) and Industry 4.0, the indoor usage of smart devices is expected to increase, thereby making their location information more important. Based on various practical issues related to large delays, high design cost, and limited performance, conventional localiz...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.127150-127174 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253 |
container_end_page | 127174 |
container_issue | |
container_start_page | 127150 |
container_title | IEEE access |
container_volume | 9 |
creator | Singh, Navneet Choe, Sangho Punmiya, Rajiv |
description | In the era of the Internet of Things (IoT) and Industry 4.0, the indoor usage of smart devices is expected to increase, thereby making their location information more important. Based on various practical issues related to large delays, high design cost, and limited performance, conventional localization techniques are not practical for indoor IoT applications. In recent years, many researchers have proposed a wide range of machine learning (ML)-based indoor localization approaches using Wi-Fi received signal strength indicator (RSSI) fingerprints. This survey attempts to provide a summarized investigation of ML-based Wi-Fi RSSI fingerprinting schemes, including data preprocessing, data augmentation, ML prediction models for indoor localization, and postprocessing in ML, and compare their performance. Any ML-based study is heavily reliant on datasets. Therefore, we dedicate a significant portion of this survey to the discussion of dataset collection and open-source datasets. To provide good direction for future research, we discuss the current challenges and potential solutions related to ML-based indoor localization systems. |
doi_str_mv | 10.1109/ACCESS.2021.3111083 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2021_3111083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9531633</ieee_id><doaj_id>oai_doaj_org_article_0e93578ca9f04e3d80c0470068ae756d</doaj_id><sourcerecordid>2573571282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253</originalsourceid><addsrcrecordid>eNpNUcFKAzEUXERBUb_AS8Dz1iRvk816q8VqoSJYi8eQJm81pW40WRX9elNXxHfJy2RmMjBFccLoiDHanI0nk8vFYsQpZyNgGVKwUxxwJpsSBMjdf_t-cZzSmuZRGRL1QbG8MfbJd0jmaGLnu0dyYRI6MutcCJHMgzUb_2V6HzqyTNv3B19OPblbLGZkmu8YX6Lv-nROxh25fcf47vHjqNhrzSbh8e95WCynl_eT63J-ezWbjOelrajqS-Ys2ralTFboHFbCQgUoJOAKHbeNMAYUgJB11SqeuczKZmVWlIpV5biAw2I2-Lpg1joHeTbxUwfj9Q8Q4qM2sfd2g5piA6JW1jQtrRCcopZWNaVSGayFdNnrdPB6ieH1DVOv1-Etdjm-5qLOWsYVzywYWDaGlCK2f78yqrd16KEOva1D_9aRVSeDyiPin6IRwCQAfANWFITf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573571282</pqid></control><display><type>article</type><title>Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview</title><source>IEEE Xplore Open Access Journals</source><creator>Singh, Navneet ; Choe, Sangho ; Punmiya, Rajiv</creator><creatorcontrib>Singh, Navneet ; Choe, Sangho ; Punmiya, Rajiv</creatorcontrib><description>In the era of the Internet of Things (IoT) and Industry 4.0, the indoor usage of smart devices is expected to increase, thereby making their location information more important. Based on various practical issues related to large delays, high design cost, and limited performance, conventional localization techniques are not practical for indoor IoT applications. In recent years, many researchers have proposed a wide range of machine learning (ML)-based indoor localization approaches using Wi-Fi received signal strength indicator (RSSI) fingerprints. This survey attempts to provide a summarized investigation of ML-based Wi-Fi RSSI fingerprinting schemes, including data preprocessing, data augmentation, ML prediction models for indoor localization, and postprocessing in ML, and compare their performance. Any ML-based study is heavily reliant on datasets. Therefore, we dedicate a significant portion of this survey to the discussion of dataset collection and open-source datasets. To provide good direction for future research, we discuss the current challenges and potential solutions related to ML-based indoor localization systems.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3111083</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Costs ; Datasets ; deep learning ; Electronic devices ; Fingerprint recognition ; Fingerprinting ; Fingerprints ; indoor localization ; Industrial applications ; Internet of Things ; Localization ; Location awareness ; Machine learning ; positioning ; Prediction models ; received signal strength indicator ; Signal strength ; Smart devices ; Wi-Fi ; Wireless fidelity</subject><ispartof>IEEE access, 2021, Vol.9, p.127150-127174</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253</citedby><cites>FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253</cites><orcidid>0000-0002-0264-9714 ; 0000-0002-3940-1608 ; 0000-0001-5294-6154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9531633$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Singh, Navneet</creatorcontrib><creatorcontrib>Choe, Sangho</creatorcontrib><creatorcontrib>Punmiya, Rajiv</creatorcontrib><title>Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the era of the Internet of Things (IoT) and Industry 4.0, the indoor usage of smart devices is expected to increase, thereby making their location information more important. Based on various practical issues related to large delays, high design cost, and limited performance, conventional localization techniques are not practical for indoor IoT applications. In recent years, many researchers have proposed a wide range of machine learning (ML)-based indoor localization approaches using Wi-Fi received signal strength indicator (RSSI) fingerprints. This survey attempts to provide a summarized investigation of ML-based Wi-Fi RSSI fingerprinting schemes, including data preprocessing, data augmentation, ML prediction models for indoor localization, and postprocessing in ML, and compare their performance. Any ML-based study is heavily reliant on datasets. Therefore, we dedicate a significant portion of this survey to the discussion of dataset collection and open-source datasets. To provide good direction for future research, we discuss the current challenges and potential solutions related to ML-based indoor localization systems.</description><subject>Costs</subject><subject>Datasets</subject><subject>deep learning</subject><subject>Electronic devices</subject><subject>Fingerprint recognition</subject><subject>Fingerprinting</subject><subject>Fingerprints</subject><subject>indoor localization</subject><subject>Industrial applications</subject><subject>Internet of Things</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Machine learning</subject><subject>positioning</subject><subject>Prediction models</subject><subject>received signal strength indicator</subject><subject>Signal strength</subject><subject>Smart devices</subject><subject>Wi-Fi</subject><subject>Wireless fidelity</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFKAzEUXERBUb_AS8Dz1iRvk816q8VqoSJYi8eQJm81pW40WRX9elNXxHfJy2RmMjBFccLoiDHanI0nk8vFYsQpZyNgGVKwUxxwJpsSBMjdf_t-cZzSmuZRGRL1QbG8MfbJd0jmaGLnu0dyYRI6MutcCJHMgzUb_2V6HzqyTNv3B19OPblbLGZkmu8YX6Lv-nROxh25fcf47vHjqNhrzSbh8e95WCynl_eT63J-ezWbjOelrajqS-Ys2ralTFboHFbCQgUoJOAKHbeNMAYUgJB11SqeuczKZmVWlIpV5biAw2I2-Lpg1joHeTbxUwfj9Q8Q4qM2sfd2g5piA6JW1jQtrRCcopZWNaVSGayFdNnrdPB6ieH1DVOv1-Etdjm-5qLOWsYVzywYWDaGlCK2f78yqrd16KEOva1D_9aRVSeDyiPin6IRwCQAfANWFITf</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Singh, Navneet</creator><creator>Choe, Sangho</creator><creator>Punmiya, Rajiv</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0264-9714</orcidid><orcidid>https://orcid.org/0000-0002-3940-1608</orcidid><orcidid>https://orcid.org/0000-0001-5294-6154</orcidid></search><sort><creationdate>2021</creationdate><title>Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview</title><author>Singh, Navneet ; Choe, Sangho ; Punmiya, Rajiv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Costs</topic><topic>Datasets</topic><topic>deep learning</topic><topic>Electronic devices</topic><topic>Fingerprint recognition</topic><topic>Fingerprinting</topic><topic>Fingerprints</topic><topic>indoor localization</topic><topic>Industrial applications</topic><topic>Internet of Things</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Machine learning</topic><topic>positioning</topic><topic>Prediction models</topic><topic>received signal strength indicator</topic><topic>Signal strength</topic><topic>Smart devices</topic><topic>Wi-Fi</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Navneet</creatorcontrib><creatorcontrib>Choe, Sangho</creatorcontrib><creatorcontrib>Punmiya, Rajiv</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Navneet</au><au>Choe, Sangho</au><au>Punmiya, Rajiv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>127150</spage><epage>127174</epage><pages>127150-127174</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the era of the Internet of Things (IoT) and Industry 4.0, the indoor usage of smart devices is expected to increase, thereby making their location information more important. Based on various practical issues related to large delays, high design cost, and limited performance, conventional localization techniques are not practical for indoor IoT applications. In recent years, many researchers have proposed a wide range of machine learning (ML)-based indoor localization approaches using Wi-Fi received signal strength indicator (RSSI) fingerprints. This survey attempts to provide a summarized investigation of ML-based Wi-Fi RSSI fingerprinting schemes, including data preprocessing, data augmentation, ML prediction models for indoor localization, and postprocessing in ML, and compare their performance. Any ML-based study is heavily reliant on datasets. Therefore, we dedicate a significant portion of this survey to the discussion of dataset collection and open-source datasets. To provide good direction for future research, we discuss the current challenges and potential solutions related to ML-based indoor localization systems.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3111083</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-0264-9714</orcidid><orcidid>https://orcid.org/0000-0002-3940-1608</orcidid><orcidid>https://orcid.org/0000-0001-5294-6154</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.127150-127174 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2021_3111083 |
source | IEEE Xplore Open Access Journals |
subjects | Costs Datasets deep learning Electronic devices Fingerprint recognition Fingerprinting Fingerprints indoor localization Industrial applications Internet of Things Localization Location awareness Machine learning positioning Prediction models received signal strength indicator Signal strength Smart devices Wi-Fi Wireless fidelity |
title | Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Based%20Indoor%20Localization%20Using%20Wi-Fi%20RSSI%20Fingerprints:%20An%20Overview&rft.jtitle=IEEE%20access&rft.au=Singh,%20Navneet&rft.date=2021&rft.volume=9&rft.spage=127150&rft.epage=127174&rft.pages=127150-127174&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3111083&rft_dat=%3Cproquest_cross%3E2573571282%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-1dcecff0164edde45c343e563ebed2c95aa38335674f82cec1c69bab005b4d253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2573571282&rft_id=info:pmid/&rft_ieee_id=9531633&rfr_iscdi=true |