Loading…

Detection of Norway Spruce Trees (Picea Abies) Infested by Bark Beetle in UAV Images Using YOLOs Architectures

In recent years, massive outbreaks of the European spruce bark beetle ( Ips typographus , (L.)) have caused colossal harm to coniferous forests. The main solution for this problem is the timely prevention of the bark beetle spread, for which it is necessary to identify damaged trees in their early s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.10384-10392
Main Authors: Safonova, Anastasiia, Hamad, Yousif, Alekhina, Anna, Kaplun, Dmitry
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33
cites cdi_FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33
container_end_page 10392
container_issue
container_start_page 10384
container_title IEEE access
container_volume 10
creator Safonova, Anastasiia
Hamad, Yousif
Alekhina, Anna
Kaplun, Dmitry
description In recent years, massive outbreaks of the European spruce bark beetle ( Ips typographus , (L.)) have caused colossal harm to coniferous forests. The main solution for this problem is the timely prevention of the bark beetle spread, for which it is necessary to identify damaged trees in their early stages of infestation. Fortunately, high-resolution unmanned aerial vehicle (UAV) imagery together with modern detection models provide a high potential for addressing such issues. In this work, we evaluate and compare three You Only Look Once (YOLO) deep neural network architectures, namely YOLOv2, YOLOv3, and YOLOv4, in the task of detecting infested trees in UAV images. We built a new dataset for training and testing these models and used a pre-processing balance contrast enhancement technique (BCET) that improves the generalization capacity of the models. Our experiments show that YOLOv4 achieves particularly good results when applying the BCET pre-processing. The best test result when comparing YOLO models was obtained for YOLOv4 with the mean average precision up to 95%. As a result of applying artificial data augmentation, the improvement for models YOLOv2, YOLOv3, and YOLOv4 was 65.0%, 7.22%, and 3.19%, respectively.
doi_str_mv 10.1109/ACCESS.2022.3144433
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3144433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9684880</ieee_id><doaj_id>oai_doaj_org_article_5eba790ac8a246aa82deb29bc1d89cb8</doaj_id><sourcerecordid>2623469817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33</originalsourceid><addsrcrecordid>eNpNUU2LE0EQHUTBZd1fsJcGL3pI7O_pPs7GVQPBCNkInpqa7prYMTsduydI_r0TZ1msSxWPeu9V8arqltE5Y9R-aBaL-81mzinnc8GklEK8qK4403YmlNAv_5tfVzel7OlYZoRUfVX1H3FAP8TUk9SRryn_gTPZHPPJI3nIiIW8-xY9AmnaiOU9WfYdlgEDac_kDvIvcoc4HJDEnmyb72T5CLuRsy2x35Ef69W6kCb7n_HiccpY3lSvOjgUvHnq19X20_3D4ststf68XDSrmZfKDDNVW8l9sF4Ir43wlgtrAtMtBWZrWnsJXijVyTYwA8iY4lgrAcFb3eogxHW1nHRDgr075vgI-ewSRPcPSHnnIA_RH9ApbKG2FLwBLjWA4QFbblvPgrG-NaPW20nrmNPv0_i926dT7sfzHddcSG0Nq8ctMW35nErJ2D27MuouObkpJ3fJyT3lNLJuJ1ZExGeG1UYaQ8Vf_UWNCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623469817</pqid></control><display><type>article</type><title>Detection of Norway Spruce Trees (Picea Abies) Infested by Bark Beetle in UAV Images Using YOLOs Architectures</title><source>IEEE Open Access Journals</source><creator>Safonova, Anastasiia ; Hamad, Yousif ; Alekhina, Anna ; Kaplun, Dmitry</creator><creatorcontrib>Safonova, Anastasiia ; Hamad, Yousif ; Alekhina, Anna ; Kaplun, Dmitry</creatorcontrib><description>In recent years, massive outbreaks of the European spruce bark beetle ( Ips typographus , (L.)) have caused colossal harm to coniferous forests. The main solution for this problem is the timely prevention of the bark beetle spread, for which it is necessary to identify damaged trees in their early stages of infestation. Fortunately, high-resolution unmanned aerial vehicle (UAV) imagery together with modern detection models provide a high potential for addressing such issues. In this work, we evaluate and compare three You Only Look Once (YOLO) deep neural network architectures, namely YOLOv2, YOLOv3, and YOLOv4, in the task of detecting infested trees in UAV images. We built a new dataset for training and testing these models and used a pre-processing balance contrast enhancement technique (BCET) that improves the generalization capacity of the models. Our experiments show that YOLOv4 achieves particularly good results when applying the BCET pre-processing. The best test result when comparing YOLO models was obtained for YOLOv4 with the mean average precision up to 95%. As a result of applying artificial data augmentation, the improvement for models YOLOv2, YOLOv3, and YOLOv4 was 65.0%, 7.22%, and 3.19%, respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3144433</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Autonomous aerial vehicles ; Bark ; bark beetle ; Beetles ; Computer architecture ; Damage detection ; Europe ; Forestry ; Monitoring ; Norway spruce ; object detection ; Task analysis ; Training ; Trees ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Vegetation ; you only look once (YOLO)</subject><ispartof>IEEE access, 2022, Vol.10, p.10384-10392</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33</citedby><cites>FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33</cites><orcidid>0000-0002-3290-2717 ; 0000-0003-2765-4509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9684880$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Safonova, Anastasiia</creatorcontrib><creatorcontrib>Hamad, Yousif</creatorcontrib><creatorcontrib>Alekhina, Anna</creatorcontrib><creatorcontrib>Kaplun, Dmitry</creatorcontrib><title>Detection of Norway Spruce Trees (Picea Abies) Infested by Bark Beetle in UAV Images Using YOLOs Architectures</title><title>IEEE access</title><addtitle>Access</addtitle><description>In recent years, massive outbreaks of the European spruce bark beetle ( Ips typographus , (L.)) have caused colossal harm to coniferous forests. The main solution for this problem is the timely prevention of the bark beetle spread, for which it is necessary to identify damaged trees in their early stages of infestation. Fortunately, high-resolution unmanned aerial vehicle (UAV) imagery together with modern detection models provide a high potential for addressing such issues. In this work, we evaluate and compare three You Only Look Once (YOLO) deep neural network architectures, namely YOLOv2, YOLOv3, and YOLOv4, in the task of detecting infested trees in UAV images. We built a new dataset for training and testing these models and used a pre-processing balance contrast enhancement technique (BCET) that improves the generalization capacity of the models. Our experiments show that YOLOv4 achieves particularly good results when applying the BCET pre-processing. The best test result when comparing YOLO models was obtained for YOLOv4 with the mean average precision up to 95%. As a result of applying artificial data augmentation, the improvement for models YOLOv2, YOLOv3, and YOLOv4 was 65.0%, 7.22%, and 3.19%, respectively.</description><subject>Artificial neural networks</subject><subject>Autonomous aerial vehicles</subject><subject>Bark</subject><subject>bark beetle</subject><subject>Beetles</subject><subject>Computer architecture</subject><subject>Damage detection</subject><subject>Europe</subject><subject>Forestry</subject><subject>Monitoring</subject><subject>Norway spruce</subject><subject>object detection</subject><subject>Task analysis</subject><subject>Training</subject><subject>Trees</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Vegetation</subject><subject>you only look once (YOLO)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU2LE0EQHUTBZd1fsJcGL3pI7O_pPs7GVQPBCNkInpqa7prYMTsduydI_r0TZ1msSxWPeu9V8arqltE5Y9R-aBaL-81mzinnc8GklEK8qK4403YmlNAv_5tfVzel7OlYZoRUfVX1H3FAP8TUk9SRryn_gTPZHPPJI3nIiIW8-xY9AmnaiOU9WfYdlgEDac_kDvIvcoc4HJDEnmyb72T5CLuRsy2x35Ef69W6kCb7n_HiccpY3lSvOjgUvHnq19X20_3D4ststf68XDSrmZfKDDNVW8l9sF4Ir43wlgtrAtMtBWZrWnsJXijVyTYwA8iY4lgrAcFb3eogxHW1nHRDgr075vgI-ewSRPcPSHnnIA_RH9ApbKG2FLwBLjWA4QFbblvPgrG-NaPW20nrmNPv0_i926dT7sfzHddcSG0Nq8ctMW35nErJ2D27MuouObkpJ3fJyT3lNLJuJ1ZExGeG1UYaQ8Vf_UWNCg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Safonova, Anastasiia</creator><creator>Hamad, Yousif</creator><creator>Alekhina, Anna</creator><creator>Kaplun, Dmitry</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3290-2717</orcidid><orcidid>https://orcid.org/0000-0003-2765-4509</orcidid></search><sort><creationdate>2022</creationdate><title>Detection of Norway Spruce Trees (Picea Abies) Infested by Bark Beetle in UAV Images Using YOLOs Architectures</title><author>Safonova, Anastasiia ; Hamad, Yousif ; Alekhina, Anna ; Kaplun, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Autonomous aerial vehicles</topic><topic>Bark</topic><topic>bark beetle</topic><topic>Beetles</topic><topic>Computer architecture</topic><topic>Damage detection</topic><topic>Europe</topic><topic>Forestry</topic><topic>Monitoring</topic><topic>Norway spruce</topic><topic>object detection</topic><topic>Task analysis</topic><topic>Training</topic><topic>Trees</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Vegetation</topic><topic>you only look once (YOLO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safonova, Anastasiia</creatorcontrib><creatorcontrib>Hamad, Yousif</creatorcontrib><creatorcontrib>Alekhina, Anna</creatorcontrib><creatorcontrib>Kaplun, Dmitry</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safonova, Anastasiia</au><au>Hamad, Yousif</au><au>Alekhina, Anna</au><au>Kaplun, Dmitry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Norway Spruce Trees (Picea Abies) Infested by Bark Beetle in UAV Images Using YOLOs Architectures</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>10384</spage><epage>10392</epage><pages>10384-10392</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, massive outbreaks of the European spruce bark beetle ( Ips typographus , (L.)) have caused colossal harm to coniferous forests. The main solution for this problem is the timely prevention of the bark beetle spread, for which it is necessary to identify damaged trees in their early stages of infestation. Fortunately, high-resolution unmanned aerial vehicle (UAV) imagery together with modern detection models provide a high potential for addressing such issues. In this work, we evaluate and compare three You Only Look Once (YOLO) deep neural network architectures, namely YOLOv2, YOLOv3, and YOLOv4, in the task of detecting infested trees in UAV images. We built a new dataset for training and testing these models and used a pre-processing balance contrast enhancement technique (BCET) that improves the generalization capacity of the models. Our experiments show that YOLOv4 achieves particularly good results when applying the BCET pre-processing. The best test result when comparing YOLO models was obtained for YOLOv4 with the mean average precision up to 95%. As a result of applying artificial data augmentation, the improvement for models YOLOv2, YOLOv3, and YOLOv4 was 65.0%, 7.22%, and 3.19%, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3144433</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3290-2717</orcidid><orcidid>https://orcid.org/0000-0003-2765-4509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.10384-10392
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3144433
source IEEE Open Access Journals
subjects Artificial neural networks
Autonomous aerial vehicles
Bark
bark beetle
Beetles
Computer architecture
Damage detection
Europe
Forestry
Monitoring
Norway spruce
object detection
Task analysis
Training
Trees
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Vegetation
you only look once (YOLO)
title Detection of Norway Spruce Trees (Picea Abies) Infested by Bark Beetle in UAV Images Using YOLOs Architectures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Norway%20Spruce%20Trees%20(Picea%20Abies)%20Infested%20by%20Bark%20Beetle%20in%20UAV%20Images%20Using%20YOLOs%20Architectures&rft.jtitle=IEEE%20access&rft.au=Safonova,%20Anastasiia&rft.date=2022&rft.volume=10&rft.spage=10384&rft.epage=10392&rft.pages=10384-10392&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3144433&rft_dat=%3Cproquest_cross%3E2623469817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623469817&rft_id=info:pmid/&rft_ieee_id=9684880&rfr_iscdi=true