Loading…
Detection of Norway Spruce Trees (Picea Abies) Infested by Bark Beetle in UAV Images Using YOLOs Architectures
In recent years, massive outbreaks of the European spruce bark beetle ( Ips typographus , (L.)) have caused colossal harm to coniferous forests. The main solution for this problem is the timely prevention of the bark beetle spread, for which it is necessary to identify damaged trees in their early s...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.10384-10392 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33 |
container_end_page | 10392 |
container_issue | |
container_start_page | 10384 |
container_title | IEEE access |
container_volume | 10 |
creator | Safonova, Anastasiia Hamad, Yousif Alekhina, Anna Kaplun, Dmitry |
description | In recent years, massive outbreaks of the European spruce bark beetle ( Ips typographus , (L.)) have caused colossal harm to coniferous forests. The main solution for this problem is the timely prevention of the bark beetle spread, for which it is necessary to identify damaged trees in their early stages of infestation. Fortunately, high-resolution unmanned aerial vehicle (UAV) imagery together with modern detection models provide a high potential for addressing such issues. In this work, we evaluate and compare three You Only Look Once (YOLO) deep neural network architectures, namely YOLOv2, YOLOv3, and YOLOv4, in the task of detecting infested trees in UAV images. We built a new dataset for training and testing these models and used a pre-processing balance contrast enhancement technique (BCET) that improves the generalization capacity of the models. Our experiments show that YOLOv4 achieves particularly good results when applying the BCET pre-processing. The best test result when comparing YOLO models was obtained for YOLOv4 with the mean average precision up to 95%. As a result of applying artificial data augmentation, the improvement for models YOLOv2, YOLOv3, and YOLOv4 was 65.0%, 7.22%, and 3.19%, respectively. |
doi_str_mv | 10.1109/ACCESS.2022.3144433 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3144433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9684880</ieee_id><doaj_id>oai_doaj_org_article_5eba790ac8a246aa82deb29bc1d89cb8</doaj_id><sourcerecordid>2623469817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33</originalsourceid><addsrcrecordid>eNpNUU2LE0EQHUTBZd1fsJcGL3pI7O_pPs7GVQPBCNkInpqa7prYMTsduydI_r0TZ1msSxWPeu9V8arqltE5Y9R-aBaL-81mzinnc8GklEK8qK4403YmlNAv_5tfVzel7OlYZoRUfVX1H3FAP8TUk9SRryn_gTPZHPPJI3nIiIW8-xY9AmnaiOU9WfYdlgEDac_kDvIvcoc4HJDEnmyb72T5CLuRsy2x35Ef69W6kCb7n_HiccpY3lSvOjgUvHnq19X20_3D4ststf68XDSrmZfKDDNVW8l9sF4Ir43wlgtrAtMtBWZrWnsJXijVyTYwA8iY4lgrAcFb3eogxHW1nHRDgr075vgI-ewSRPcPSHnnIA_RH9ApbKG2FLwBLjWA4QFbblvPgrG-NaPW20nrmNPv0_i926dT7sfzHddcSG0Nq8ctMW35nErJ2D27MuouObkpJ3fJyT3lNLJuJ1ZExGeG1UYaQ8Vf_UWNCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623469817</pqid></control><display><type>article</type><title>Detection of Norway Spruce Trees (Picea Abies) Infested by Bark Beetle in UAV Images Using YOLOs Architectures</title><source>IEEE Open Access Journals</source><creator>Safonova, Anastasiia ; Hamad, Yousif ; Alekhina, Anna ; Kaplun, Dmitry</creator><creatorcontrib>Safonova, Anastasiia ; Hamad, Yousif ; Alekhina, Anna ; Kaplun, Dmitry</creatorcontrib><description>In recent years, massive outbreaks of the European spruce bark beetle ( Ips typographus , (L.)) have caused colossal harm to coniferous forests. The main solution for this problem is the timely prevention of the bark beetle spread, for which it is necessary to identify damaged trees in their early stages of infestation. Fortunately, high-resolution unmanned aerial vehicle (UAV) imagery together with modern detection models provide a high potential for addressing such issues. In this work, we evaluate and compare three You Only Look Once (YOLO) deep neural network architectures, namely YOLOv2, YOLOv3, and YOLOv4, in the task of detecting infested trees in UAV images. We built a new dataset for training and testing these models and used a pre-processing balance contrast enhancement technique (BCET) that improves the generalization capacity of the models. Our experiments show that YOLOv4 achieves particularly good results when applying the BCET pre-processing. The best test result when comparing YOLO models was obtained for YOLOv4 with the mean average precision up to 95%. As a result of applying artificial data augmentation, the improvement for models YOLOv2, YOLOv3, and YOLOv4 was 65.0%, 7.22%, and 3.19%, respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3144433</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Autonomous aerial vehicles ; Bark ; bark beetle ; Beetles ; Computer architecture ; Damage detection ; Europe ; Forestry ; Monitoring ; Norway spruce ; object detection ; Task analysis ; Training ; Trees ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Vegetation ; you only look once (YOLO)</subject><ispartof>IEEE access, 2022, Vol.10, p.10384-10392</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33</citedby><cites>FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33</cites><orcidid>0000-0002-3290-2717 ; 0000-0003-2765-4509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9684880$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Safonova, Anastasiia</creatorcontrib><creatorcontrib>Hamad, Yousif</creatorcontrib><creatorcontrib>Alekhina, Anna</creatorcontrib><creatorcontrib>Kaplun, Dmitry</creatorcontrib><title>Detection of Norway Spruce Trees (Picea Abies) Infested by Bark Beetle in UAV Images Using YOLOs Architectures</title><title>IEEE access</title><addtitle>Access</addtitle><description>In recent years, massive outbreaks of the European spruce bark beetle ( Ips typographus , (L.)) have caused colossal harm to coniferous forests. The main solution for this problem is the timely prevention of the bark beetle spread, for which it is necessary to identify damaged trees in their early stages of infestation. Fortunately, high-resolution unmanned aerial vehicle (UAV) imagery together with modern detection models provide a high potential for addressing such issues. In this work, we evaluate and compare three You Only Look Once (YOLO) deep neural network architectures, namely YOLOv2, YOLOv3, and YOLOv4, in the task of detecting infested trees in UAV images. We built a new dataset for training and testing these models and used a pre-processing balance contrast enhancement technique (BCET) that improves the generalization capacity of the models. Our experiments show that YOLOv4 achieves particularly good results when applying the BCET pre-processing. The best test result when comparing YOLO models was obtained for YOLOv4 with the mean average precision up to 95%. As a result of applying artificial data augmentation, the improvement for models YOLOv2, YOLOv3, and YOLOv4 was 65.0%, 7.22%, and 3.19%, respectively.</description><subject>Artificial neural networks</subject><subject>Autonomous aerial vehicles</subject><subject>Bark</subject><subject>bark beetle</subject><subject>Beetles</subject><subject>Computer architecture</subject><subject>Damage detection</subject><subject>Europe</subject><subject>Forestry</subject><subject>Monitoring</subject><subject>Norway spruce</subject><subject>object detection</subject><subject>Task analysis</subject><subject>Training</subject><subject>Trees</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Vegetation</subject><subject>you only look once (YOLO)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU2LE0EQHUTBZd1fsJcGL3pI7O_pPs7GVQPBCNkInpqa7prYMTsduydI_r0TZ1msSxWPeu9V8arqltE5Y9R-aBaL-81mzinnc8GklEK8qK4403YmlNAv_5tfVzel7OlYZoRUfVX1H3FAP8TUk9SRryn_gTPZHPPJI3nIiIW8-xY9AmnaiOU9WfYdlgEDac_kDvIvcoc4HJDEnmyb72T5CLuRsy2x35Ef69W6kCb7n_HiccpY3lSvOjgUvHnq19X20_3D4ststf68XDSrmZfKDDNVW8l9sF4Ir43wlgtrAtMtBWZrWnsJXijVyTYwA8iY4lgrAcFb3eogxHW1nHRDgr075vgI-ewSRPcPSHnnIA_RH9ApbKG2FLwBLjWA4QFbblvPgrG-NaPW20nrmNPv0_i926dT7sfzHddcSG0Nq8ctMW35nErJ2D27MuouObkpJ3fJyT3lNLJuJ1ZExGeG1UYaQ8Vf_UWNCg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Safonova, Anastasiia</creator><creator>Hamad, Yousif</creator><creator>Alekhina, Anna</creator><creator>Kaplun, Dmitry</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3290-2717</orcidid><orcidid>https://orcid.org/0000-0003-2765-4509</orcidid></search><sort><creationdate>2022</creationdate><title>Detection of Norway Spruce Trees (Picea Abies) Infested by Bark Beetle in UAV Images Using YOLOs Architectures</title><author>Safonova, Anastasiia ; Hamad, Yousif ; Alekhina, Anna ; Kaplun, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Autonomous aerial vehicles</topic><topic>Bark</topic><topic>bark beetle</topic><topic>Beetles</topic><topic>Computer architecture</topic><topic>Damage detection</topic><topic>Europe</topic><topic>Forestry</topic><topic>Monitoring</topic><topic>Norway spruce</topic><topic>object detection</topic><topic>Task analysis</topic><topic>Training</topic><topic>Trees</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Vegetation</topic><topic>you only look once (YOLO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safonova, Anastasiia</creatorcontrib><creatorcontrib>Hamad, Yousif</creatorcontrib><creatorcontrib>Alekhina, Anna</creatorcontrib><creatorcontrib>Kaplun, Dmitry</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safonova, Anastasiia</au><au>Hamad, Yousif</au><au>Alekhina, Anna</au><au>Kaplun, Dmitry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Norway Spruce Trees (Picea Abies) Infested by Bark Beetle in UAV Images Using YOLOs Architectures</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>10384</spage><epage>10392</epage><pages>10384-10392</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, massive outbreaks of the European spruce bark beetle ( Ips typographus , (L.)) have caused colossal harm to coniferous forests. The main solution for this problem is the timely prevention of the bark beetle spread, for which it is necessary to identify damaged trees in their early stages of infestation. Fortunately, high-resolution unmanned aerial vehicle (UAV) imagery together with modern detection models provide a high potential for addressing such issues. In this work, we evaluate and compare three You Only Look Once (YOLO) deep neural network architectures, namely YOLOv2, YOLOv3, and YOLOv4, in the task of detecting infested trees in UAV images. We built a new dataset for training and testing these models and used a pre-processing balance contrast enhancement technique (BCET) that improves the generalization capacity of the models. Our experiments show that YOLOv4 achieves particularly good results when applying the BCET pre-processing. The best test result when comparing YOLO models was obtained for YOLOv4 with the mean average precision up to 95%. As a result of applying artificial data augmentation, the improvement for models YOLOv2, YOLOv3, and YOLOv4 was 65.0%, 7.22%, and 3.19%, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3144433</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3290-2717</orcidid><orcidid>https://orcid.org/0000-0003-2765-4509</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.10384-10392 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3144433 |
source | IEEE Open Access Journals |
subjects | Artificial neural networks Autonomous aerial vehicles Bark bark beetle Beetles Computer architecture Damage detection Europe Forestry Monitoring Norway spruce object detection Task analysis Training Trees unmanned aerial vehicle (UAV) Unmanned aerial vehicles Vegetation you only look once (YOLO) |
title | Detection of Norway Spruce Trees (Picea Abies) Infested by Bark Beetle in UAV Images Using YOLOs Architectures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Norway%20Spruce%20Trees%20(Picea%20Abies)%20Infested%20by%20Bark%20Beetle%20in%20UAV%20Images%20Using%20YOLOs%20Architectures&rft.jtitle=IEEE%20access&rft.au=Safonova,%20Anastasiia&rft.date=2022&rft.volume=10&rft.spage=10384&rft.epage=10392&rft.pages=10384-10392&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3144433&rft_dat=%3Cproquest_cross%3E2623469817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-57942cd9c33c683c92398d16b0a19707c4ac355f4bd18ae1152e753adc96b6d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623469817&rft_id=info:pmid/&rft_ieee_id=9684880&rfr_iscdi=true |