Loading…

A Selective Segmentation Model Using Dual-Level Set Functions and Local Spatial Distance

Selective image segmentation is one of the most significant subjects in medical imaging and real-world applications. We present a robust selective segmentation model based on local spatial distance utilizing a dual-level set variational formulation in this study. Our concept tries to partition all o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.22344-22358
Main Authors: Rahman, Afzal, Ali, Haider, Badshah, Noor, Rada, Lavdie, Khan, Ayaz Ali, Hussain, Hameed, Zakarya, Muhammad, Ahmed, Aftab, Rahman, Izaz Ur, Raza, Mushtaq, Haleem, Muhammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873
cites cdi_FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873
container_end_page 22358
container_issue
container_start_page 22344
container_title IEEE access
container_volume 10
creator Rahman, Afzal
Ali, Haider
Badshah, Noor
Rada, Lavdie
Khan, Ayaz Ali
Hussain, Hameed
Zakarya, Muhammad
Ahmed, Aftab
Rahman, Izaz Ur
Raza, Mushtaq
Haleem, Muhammad
description Selective image segmentation is one of the most significant subjects in medical imaging and real-world applications. We present a robust selective segmentation model based on local spatial distance utilizing a dual-level set variational formulation in this study. Our concept tries to partition all objects using a global level set function and the selected item using a different level set function (local). Our model combines the marker distance function, edge detection, local spatial distance, and active contour without edges into one. The new model is robust to noise and gives better performance for images having intensity in-homogeneity (background and foreground). Moreover, we observed that the proposed model captures objects which do not have uniform features. The experimental results show that our model is robust to noise and works better than the other existing models.
doi_str_mv 10.1109/ACCESS.2022.3152785
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3152785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9717238</ieee_id><doaj_id>oai_doaj_org_article_c7eb51dddf51421fafee63bc28539526</doaj_id><sourcerecordid>2635717076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873</originalsourceid><addsrcrecordid>eNpNUV1rwjAULWODifMX-FLYc10-miZ9lKqb0LGHOthbSNMbqdTGNVXYv1-6iiwv93JyPi6cIJhjtMAYpS_LLFsXxYIgQhYUM8IFuwsmBCdpRBlN7v_tj8HMuQPyT3iI8UnwtQwLaED39QX8tj9C26u-tm34bitowk9Xt_twdVZNlMPFAwX04ebc6oHjQtVWYW618vjJy_xc1a5XrYan4MGoxsHsOqfBbrPeZW9R_vG6zZZ5pGMk-ghzQ-MEDCuVARCkIkozbBQjJRFxyVKRxNQwSA0XaaXSMmYoMYh4eqkEp9NgO9pWVh3kqauPqvuRVtXyD7DdXqqur3UDUnMoGa6qyjAcE5_hAxNaaiIYTRlJvNfz6HXq7PcZXC8P9ty1_nrpfxnHHPGBRUeW7qxzHZhbKkZyKESOhcihEHktxKvmo6oGgJsi9Z6ECvoLVYCGqw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635717076</pqid></control><display><type>article</type><title>A Selective Segmentation Model Using Dual-Level Set Functions and Local Spatial Distance</title><source>IEEE Xplore Open Access Journals</source><creator>Rahman, Afzal ; Ali, Haider ; Badshah, Noor ; Rada, Lavdie ; Khan, Ayaz Ali ; Hussain, Hameed ; Zakarya, Muhammad ; Ahmed, Aftab ; Rahman, Izaz Ur ; Raza, Mushtaq ; Haleem, Muhammad</creator><creatorcontrib>Rahman, Afzal ; Ali, Haider ; Badshah, Noor ; Rada, Lavdie ; Khan, Ayaz Ali ; Hussain, Hameed ; Zakarya, Muhammad ; Ahmed, Aftab ; Rahman, Izaz Ur ; Raza, Mushtaq ; Haleem, Muhammad</creatorcontrib><description>Selective image segmentation is one of the most significant subjects in medical imaging and real-world applications. We present a robust selective segmentation model based on local spatial distance utilizing a dual-level set variational formulation in this study. Our concept tries to partition all objects using a global level set function and the selected item using a different level set function (local). Our model combines the marker distance function, edge detection, local spatial distance, and active contour without edges into one. The new model is robust to noise and gives better performance for images having intensity in-homogeneity (background and foreground). Moreover, we observed that the proposed model captures objects which do not have uniform features. The experimental results show that our model is robust to noise and works better than the other existing models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3152785</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active contours ; Background noise ; Computational modeling ; Edge detection ; Euler-Lagrange equation ; Homogeneity ; Image edge detection ; Image segmentation ; Level set ; level set function ; local similarity factor ; local spatial distance ; Mathematical models ; Medical imaging ; Motion segmentation ; Robustness ; selective segmentation</subject><ispartof>IEEE access, 2022, Vol.10, p.22344-22358</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873</citedby><cites>FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873</cites><orcidid>0000-0002-2688-4962 ; 0000-0002-0782-1077 ; 0000-0002-2793-858X ; 0000-0002-6330-2554 ; 0000-0002-0916-4728 ; 0000-0002-6906-5860 ; 0000-0003-2890-8072 ; 0000-0001-7070-6699 ; 0000-0001-9364-0231 ; 0000-0002-2289-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9717238$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Rahman, Afzal</creatorcontrib><creatorcontrib>Ali, Haider</creatorcontrib><creatorcontrib>Badshah, Noor</creatorcontrib><creatorcontrib>Rada, Lavdie</creatorcontrib><creatorcontrib>Khan, Ayaz Ali</creatorcontrib><creatorcontrib>Hussain, Hameed</creatorcontrib><creatorcontrib>Zakarya, Muhammad</creatorcontrib><creatorcontrib>Ahmed, Aftab</creatorcontrib><creatorcontrib>Rahman, Izaz Ur</creatorcontrib><creatorcontrib>Raza, Mushtaq</creatorcontrib><creatorcontrib>Haleem, Muhammad</creatorcontrib><title>A Selective Segmentation Model Using Dual-Level Set Functions and Local Spatial Distance</title><title>IEEE access</title><addtitle>Access</addtitle><description>Selective image segmentation is one of the most significant subjects in medical imaging and real-world applications. We present a robust selective segmentation model based on local spatial distance utilizing a dual-level set variational formulation in this study. Our concept tries to partition all objects using a global level set function and the selected item using a different level set function (local). Our model combines the marker distance function, edge detection, local spatial distance, and active contour without edges into one. The new model is robust to noise and gives better performance for images having intensity in-homogeneity (background and foreground). Moreover, we observed that the proposed model captures objects which do not have uniform features. The experimental results show that our model is robust to noise and works better than the other existing models.</description><subject>Active contours</subject><subject>Background noise</subject><subject>Computational modeling</subject><subject>Edge detection</subject><subject>Euler-Lagrange equation</subject><subject>Homogeneity</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Level set</subject><subject>level set function</subject><subject>local similarity factor</subject><subject>local spatial distance</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Motion segmentation</subject><subject>Robustness</subject><subject>selective segmentation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rwjAULWODifMX-FLYc10-miZ9lKqb0LGHOthbSNMbqdTGNVXYv1-6iiwv93JyPi6cIJhjtMAYpS_LLFsXxYIgQhYUM8IFuwsmBCdpRBlN7v_tj8HMuQPyT3iI8UnwtQwLaED39QX8tj9C26u-tm34bitowk9Xt_twdVZNlMPFAwX04ebc6oHjQtVWYW618vjJy_xc1a5XrYan4MGoxsHsOqfBbrPeZW9R_vG6zZZ5pGMk-ghzQ-MEDCuVARCkIkozbBQjJRFxyVKRxNQwSA0XaaXSMmYoMYh4eqkEp9NgO9pWVh3kqauPqvuRVtXyD7DdXqqur3UDUnMoGa6qyjAcE5_hAxNaaiIYTRlJvNfz6HXq7PcZXC8P9ty1_nrpfxnHHPGBRUeW7qxzHZhbKkZyKESOhcihEHktxKvmo6oGgJsi9Z6ECvoLVYCGqw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Rahman, Afzal</creator><creator>Ali, Haider</creator><creator>Badshah, Noor</creator><creator>Rada, Lavdie</creator><creator>Khan, Ayaz Ali</creator><creator>Hussain, Hameed</creator><creator>Zakarya, Muhammad</creator><creator>Ahmed, Aftab</creator><creator>Rahman, Izaz Ur</creator><creator>Raza, Mushtaq</creator><creator>Haleem, Muhammad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2688-4962</orcidid><orcidid>https://orcid.org/0000-0002-0782-1077</orcidid><orcidid>https://orcid.org/0000-0002-2793-858X</orcidid><orcidid>https://orcid.org/0000-0002-6330-2554</orcidid><orcidid>https://orcid.org/0000-0002-0916-4728</orcidid><orcidid>https://orcid.org/0000-0002-6906-5860</orcidid><orcidid>https://orcid.org/0000-0003-2890-8072</orcidid><orcidid>https://orcid.org/0000-0001-7070-6699</orcidid><orcidid>https://orcid.org/0000-0001-9364-0231</orcidid><orcidid>https://orcid.org/0000-0002-2289-6624</orcidid></search><sort><creationdate>2022</creationdate><title>A Selective Segmentation Model Using Dual-Level Set Functions and Local Spatial Distance</title><author>Rahman, Afzal ; Ali, Haider ; Badshah, Noor ; Rada, Lavdie ; Khan, Ayaz Ali ; Hussain, Hameed ; Zakarya, Muhammad ; Ahmed, Aftab ; Rahman, Izaz Ur ; Raza, Mushtaq ; Haleem, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active contours</topic><topic>Background noise</topic><topic>Computational modeling</topic><topic>Edge detection</topic><topic>Euler-Lagrange equation</topic><topic>Homogeneity</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Level set</topic><topic>level set function</topic><topic>local similarity factor</topic><topic>local spatial distance</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Motion segmentation</topic><topic>Robustness</topic><topic>selective segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Afzal</creatorcontrib><creatorcontrib>Ali, Haider</creatorcontrib><creatorcontrib>Badshah, Noor</creatorcontrib><creatorcontrib>Rada, Lavdie</creatorcontrib><creatorcontrib>Khan, Ayaz Ali</creatorcontrib><creatorcontrib>Hussain, Hameed</creatorcontrib><creatorcontrib>Zakarya, Muhammad</creatorcontrib><creatorcontrib>Ahmed, Aftab</creatorcontrib><creatorcontrib>Rahman, Izaz Ur</creatorcontrib><creatorcontrib>Raza, Mushtaq</creatorcontrib><creatorcontrib>Haleem, Muhammad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Afzal</au><au>Ali, Haider</au><au>Badshah, Noor</au><au>Rada, Lavdie</au><au>Khan, Ayaz Ali</au><au>Hussain, Hameed</au><au>Zakarya, Muhammad</au><au>Ahmed, Aftab</au><au>Rahman, Izaz Ur</au><au>Raza, Mushtaq</au><au>Haleem, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Selective Segmentation Model Using Dual-Level Set Functions and Local Spatial Distance</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>22344</spage><epage>22358</epage><pages>22344-22358</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Selective image segmentation is one of the most significant subjects in medical imaging and real-world applications. We present a robust selective segmentation model based on local spatial distance utilizing a dual-level set variational formulation in this study. Our concept tries to partition all objects using a global level set function and the selected item using a different level set function (local). Our model combines the marker distance function, edge detection, local spatial distance, and active contour without edges into one. The new model is robust to noise and gives better performance for images having intensity in-homogeneity (background and foreground). Moreover, we observed that the proposed model captures objects which do not have uniform features. The experimental results show that our model is robust to noise and works better than the other existing models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3152785</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2688-4962</orcidid><orcidid>https://orcid.org/0000-0002-0782-1077</orcidid><orcidid>https://orcid.org/0000-0002-2793-858X</orcidid><orcidid>https://orcid.org/0000-0002-6330-2554</orcidid><orcidid>https://orcid.org/0000-0002-0916-4728</orcidid><orcidid>https://orcid.org/0000-0002-6906-5860</orcidid><orcidid>https://orcid.org/0000-0003-2890-8072</orcidid><orcidid>https://orcid.org/0000-0001-7070-6699</orcidid><orcidid>https://orcid.org/0000-0001-9364-0231</orcidid><orcidid>https://orcid.org/0000-0002-2289-6624</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.22344-22358
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3152785
source IEEE Xplore Open Access Journals
subjects Active contours
Background noise
Computational modeling
Edge detection
Euler-Lagrange equation
Homogeneity
Image edge detection
Image segmentation
Level set
level set function
local similarity factor
local spatial distance
Mathematical models
Medical imaging
Motion segmentation
Robustness
selective segmentation
title A Selective Segmentation Model Using Dual-Level Set Functions and Local Spatial Distance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Selective%20Segmentation%20Model%20Using%20Dual-Level%20Set%20Functions%20and%20Local%20Spatial%20Distance&rft.jtitle=IEEE%20access&rft.au=Rahman,%20Afzal&rft.date=2022&rft.volume=10&rft.spage=22344&rft.epage=22358&rft.pages=22344-22358&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3152785&rft_dat=%3Cproquest_cross%3E2635717076%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635717076&rft_id=info:pmid/&rft_ieee_id=9717238&rfr_iscdi=true