Loading…
A Selective Segmentation Model Using Dual-Level Set Functions and Local Spatial Distance
Selective image segmentation is one of the most significant subjects in medical imaging and real-world applications. We present a robust selective segmentation model based on local spatial distance utilizing a dual-level set variational formulation in this study. Our concept tries to partition all o...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.22344-22358 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873 |
container_end_page | 22358 |
container_issue | |
container_start_page | 22344 |
container_title | IEEE access |
container_volume | 10 |
creator | Rahman, Afzal Ali, Haider Badshah, Noor Rada, Lavdie Khan, Ayaz Ali Hussain, Hameed Zakarya, Muhammad Ahmed, Aftab Rahman, Izaz Ur Raza, Mushtaq Haleem, Muhammad |
description | Selective image segmentation is one of the most significant subjects in medical imaging and real-world applications. We present a robust selective segmentation model based on local spatial distance utilizing a dual-level set variational formulation in this study. Our concept tries to partition all objects using a global level set function and the selected item using a different level set function (local). Our model combines the marker distance function, edge detection, local spatial distance, and active contour without edges into one. The new model is robust to noise and gives better performance for images having intensity in-homogeneity (background and foreground). Moreover, we observed that the proposed model captures objects which do not have uniform features. The experimental results show that our model is robust to noise and works better than the other existing models. |
doi_str_mv | 10.1109/ACCESS.2022.3152785 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3152785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9717238</ieee_id><doaj_id>oai_doaj_org_article_c7eb51dddf51421fafee63bc28539526</doaj_id><sourcerecordid>2635717076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873</originalsourceid><addsrcrecordid>eNpNUV1rwjAULWODifMX-FLYc10-miZ9lKqb0LGHOthbSNMbqdTGNVXYv1-6iiwv93JyPi6cIJhjtMAYpS_LLFsXxYIgQhYUM8IFuwsmBCdpRBlN7v_tj8HMuQPyT3iI8UnwtQwLaED39QX8tj9C26u-tm34bitowk9Xt_twdVZNlMPFAwX04ebc6oHjQtVWYW618vjJy_xc1a5XrYan4MGoxsHsOqfBbrPeZW9R_vG6zZZ5pGMk-ghzQ-MEDCuVARCkIkozbBQjJRFxyVKRxNQwSA0XaaXSMmYoMYh4eqkEp9NgO9pWVh3kqauPqvuRVtXyD7DdXqqur3UDUnMoGa6qyjAcE5_hAxNaaiIYTRlJvNfz6HXq7PcZXC8P9ty1_nrpfxnHHPGBRUeW7qxzHZhbKkZyKESOhcihEHktxKvmo6oGgJsi9Z6ECvoLVYCGqw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635717076</pqid></control><display><type>article</type><title>A Selective Segmentation Model Using Dual-Level Set Functions and Local Spatial Distance</title><source>IEEE Xplore Open Access Journals</source><creator>Rahman, Afzal ; Ali, Haider ; Badshah, Noor ; Rada, Lavdie ; Khan, Ayaz Ali ; Hussain, Hameed ; Zakarya, Muhammad ; Ahmed, Aftab ; Rahman, Izaz Ur ; Raza, Mushtaq ; Haleem, Muhammad</creator><creatorcontrib>Rahman, Afzal ; Ali, Haider ; Badshah, Noor ; Rada, Lavdie ; Khan, Ayaz Ali ; Hussain, Hameed ; Zakarya, Muhammad ; Ahmed, Aftab ; Rahman, Izaz Ur ; Raza, Mushtaq ; Haleem, Muhammad</creatorcontrib><description>Selective image segmentation is one of the most significant subjects in medical imaging and real-world applications. We present a robust selective segmentation model based on local spatial distance utilizing a dual-level set variational formulation in this study. Our concept tries to partition all objects using a global level set function and the selected item using a different level set function (local). Our model combines the marker distance function, edge detection, local spatial distance, and active contour without edges into one. The new model is robust to noise and gives better performance for images having intensity in-homogeneity (background and foreground). Moreover, we observed that the proposed model captures objects which do not have uniform features. The experimental results show that our model is robust to noise and works better than the other existing models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3152785</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active contours ; Background noise ; Computational modeling ; Edge detection ; Euler-Lagrange equation ; Homogeneity ; Image edge detection ; Image segmentation ; Level set ; level set function ; local similarity factor ; local spatial distance ; Mathematical models ; Medical imaging ; Motion segmentation ; Robustness ; selective segmentation</subject><ispartof>IEEE access, 2022, Vol.10, p.22344-22358</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873</citedby><cites>FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873</cites><orcidid>0000-0002-2688-4962 ; 0000-0002-0782-1077 ; 0000-0002-2793-858X ; 0000-0002-6330-2554 ; 0000-0002-0916-4728 ; 0000-0002-6906-5860 ; 0000-0003-2890-8072 ; 0000-0001-7070-6699 ; 0000-0001-9364-0231 ; 0000-0002-2289-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9717238$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Rahman, Afzal</creatorcontrib><creatorcontrib>Ali, Haider</creatorcontrib><creatorcontrib>Badshah, Noor</creatorcontrib><creatorcontrib>Rada, Lavdie</creatorcontrib><creatorcontrib>Khan, Ayaz Ali</creatorcontrib><creatorcontrib>Hussain, Hameed</creatorcontrib><creatorcontrib>Zakarya, Muhammad</creatorcontrib><creatorcontrib>Ahmed, Aftab</creatorcontrib><creatorcontrib>Rahman, Izaz Ur</creatorcontrib><creatorcontrib>Raza, Mushtaq</creatorcontrib><creatorcontrib>Haleem, Muhammad</creatorcontrib><title>A Selective Segmentation Model Using Dual-Level Set Functions and Local Spatial Distance</title><title>IEEE access</title><addtitle>Access</addtitle><description>Selective image segmentation is one of the most significant subjects in medical imaging and real-world applications. We present a robust selective segmentation model based on local spatial distance utilizing a dual-level set variational formulation in this study. Our concept tries to partition all objects using a global level set function and the selected item using a different level set function (local). Our model combines the marker distance function, edge detection, local spatial distance, and active contour without edges into one. The new model is robust to noise and gives better performance for images having intensity in-homogeneity (background and foreground). Moreover, we observed that the proposed model captures objects which do not have uniform features. The experimental results show that our model is robust to noise and works better than the other existing models.</description><subject>Active contours</subject><subject>Background noise</subject><subject>Computational modeling</subject><subject>Edge detection</subject><subject>Euler-Lagrange equation</subject><subject>Homogeneity</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Level set</subject><subject>level set function</subject><subject>local similarity factor</subject><subject>local spatial distance</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Motion segmentation</subject><subject>Robustness</subject><subject>selective segmentation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rwjAULWODifMX-FLYc10-miZ9lKqb0LGHOthbSNMbqdTGNVXYv1-6iiwv93JyPi6cIJhjtMAYpS_LLFsXxYIgQhYUM8IFuwsmBCdpRBlN7v_tj8HMuQPyT3iI8UnwtQwLaED39QX8tj9C26u-tm34bitowk9Xt_twdVZNlMPFAwX04ebc6oHjQtVWYW618vjJy_xc1a5XrYan4MGoxsHsOqfBbrPeZW9R_vG6zZZ5pGMk-ghzQ-MEDCuVARCkIkozbBQjJRFxyVKRxNQwSA0XaaXSMmYoMYh4eqkEp9NgO9pWVh3kqauPqvuRVtXyD7DdXqqur3UDUnMoGa6qyjAcE5_hAxNaaiIYTRlJvNfz6HXq7PcZXC8P9ty1_nrpfxnHHPGBRUeW7qxzHZhbKkZyKESOhcihEHktxKvmo6oGgJsi9Z6ECvoLVYCGqw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Rahman, Afzal</creator><creator>Ali, Haider</creator><creator>Badshah, Noor</creator><creator>Rada, Lavdie</creator><creator>Khan, Ayaz Ali</creator><creator>Hussain, Hameed</creator><creator>Zakarya, Muhammad</creator><creator>Ahmed, Aftab</creator><creator>Rahman, Izaz Ur</creator><creator>Raza, Mushtaq</creator><creator>Haleem, Muhammad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2688-4962</orcidid><orcidid>https://orcid.org/0000-0002-0782-1077</orcidid><orcidid>https://orcid.org/0000-0002-2793-858X</orcidid><orcidid>https://orcid.org/0000-0002-6330-2554</orcidid><orcidid>https://orcid.org/0000-0002-0916-4728</orcidid><orcidid>https://orcid.org/0000-0002-6906-5860</orcidid><orcidid>https://orcid.org/0000-0003-2890-8072</orcidid><orcidid>https://orcid.org/0000-0001-7070-6699</orcidid><orcidid>https://orcid.org/0000-0001-9364-0231</orcidid><orcidid>https://orcid.org/0000-0002-2289-6624</orcidid></search><sort><creationdate>2022</creationdate><title>A Selective Segmentation Model Using Dual-Level Set Functions and Local Spatial Distance</title><author>Rahman, Afzal ; Ali, Haider ; Badshah, Noor ; Rada, Lavdie ; Khan, Ayaz Ali ; Hussain, Hameed ; Zakarya, Muhammad ; Ahmed, Aftab ; Rahman, Izaz Ur ; Raza, Mushtaq ; Haleem, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active contours</topic><topic>Background noise</topic><topic>Computational modeling</topic><topic>Edge detection</topic><topic>Euler-Lagrange equation</topic><topic>Homogeneity</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Level set</topic><topic>level set function</topic><topic>local similarity factor</topic><topic>local spatial distance</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Motion segmentation</topic><topic>Robustness</topic><topic>selective segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Afzal</creatorcontrib><creatorcontrib>Ali, Haider</creatorcontrib><creatorcontrib>Badshah, Noor</creatorcontrib><creatorcontrib>Rada, Lavdie</creatorcontrib><creatorcontrib>Khan, Ayaz Ali</creatorcontrib><creatorcontrib>Hussain, Hameed</creatorcontrib><creatorcontrib>Zakarya, Muhammad</creatorcontrib><creatorcontrib>Ahmed, Aftab</creatorcontrib><creatorcontrib>Rahman, Izaz Ur</creatorcontrib><creatorcontrib>Raza, Mushtaq</creatorcontrib><creatorcontrib>Haleem, Muhammad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Afzal</au><au>Ali, Haider</au><au>Badshah, Noor</au><au>Rada, Lavdie</au><au>Khan, Ayaz Ali</au><au>Hussain, Hameed</au><au>Zakarya, Muhammad</au><au>Ahmed, Aftab</au><au>Rahman, Izaz Ur</au><au>Raza, Mushtaq</au><au>Haleem, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Selective Segmentation Model Using Dual-Level Set Functions and Local Spatial Distance</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>22344</spage><epage>22358</epage><pages>22344-22358</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Selective image segmentation is one of the most significant subjects in medical imaging and real-world applications. We present a robust selective segmentation model based on local spatial distance utilizing a dual-level set variational formulation in this study. Our concept tries to partition all objects using a global level set function and the selected item using a different level set function (local). Our model combines the marker distance function, edge detection, local spatial distance, and active contour without edges into one. The new model is robust to noise and gives better performance for images having intensity in-homogeneity (background and foreground). Moreover, we observed that the proposed model captures objects which do not have uniform features. The experimental results show that our model is robust to noise and works better than the other existing models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3152785</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2688-4962</orcidid><orcidid>https://orcid.org/0000-0002-0782-1077</orcidid><orcidid>https://orcid.org/0000-0002-2793-858X</orcidid><orcidid>https://orcid.org/0000-0002-6330-2554</orcidid><orcidid>https://orcid.org/0000-0002-0916-4728</orcidid><orcidid>https://orcid.org/0000-0002-6906-5860</orcidid><orcidid>https://orcid.org/0000-0003-2890-8072</orcidid><orcidid>https://orcid.org/0000-0001-7070-6699</orcidid><orcidid>https://orcid.org/0000-0001-9364-0231</orcidid><orcidid>https://orcid.org/0000-0002-2289-6624</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.22344-22358 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3152785 |
source | IEEE Xplore Open Access Journals |
subjects | Active contours Background noise Computational modeling Edge detection Euler-Lagrange equation Homogeneity Image edge detection Image segmentation Level set level set function local similarity factor local spatial distance Mathematical models Medical imaging Motion segmentation Robustness selective segmentation |
title | A Selective Segmentation Model Using Dual-Level Set Functions and Local Spatial Distance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Selective%20Segmentation%20Model%20Using%20Dual-Level%20Set%20Functions%20and%20Local%20Spatial%20Distance&rft.jtitle=IEEE%20access&rft.au=Rahman,%20Afzal&rft.date=2022&rft.volume=10&rft.spage=22344&rft.epage=22358&rft.pages=22344-22358&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3152785&rft_dat=%3Cproquest_cross%3E2635717076%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-17f346ef5bafee82d2ac51fa52b284b598643f5e9f789da9b4506f02bafba873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635717076&rft_id=info:pmid/&rft_ieee_id=9717238&rfr_iscdi=true |