Loading…
Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices
This article presents a sub-6GHz ISM-band flexible wearable MIMO antenna array for wireless body area networks (WBANs) and biomedical telemetry devices. The array is based on metasurface inspired technology. The antenna array consists of 2×2 matrix of triangular-shaped radiation elements that were r...
Saved in:
Published in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Althuwayb, Ayman A. Alibakhshikenari, Mohammad Virdee, Bal S. Rashid, Nasr Kaaniche, Khaled Atitallah, Ahmed Ben Armghan, Ammar Elhamrawy, Osama I. See, Chan Hwan Falcone, Francisco |
description | This article presents a sub-6GHz ISM-band flexible wearable MIMO antenna array for wireless body area networks (WBANs) and biomedical telemetry devices. The array is based on metasurface inspired technology. The antenna array consists of 2×2 matrix of triangular-shaped radiation elements that were realized on 0.8 mm thick Rogers RT/duroid 5880 substrate. Radiation characteristics of the array are enhanced by isolating the surface current interaction between the individual radiators in the array. This is achieved by inserting an electromagnetic bandgap (EBG) decoupling structure between the radiating elements. The radiating elements were transformed into a metasurface by etching sub-wavelength slots inside them. The periodic arrangement of slots acts like resonant scatterers that manipulate the electromagnetic response of the surface. Results confirm that by employing the decoupling structure and sub-wavelength slots the isolation between the radiators is significantly improved (>34.8 dB). Moreover, there is an improvement in the array's fractional bandwidth, gain and the radiation efficiency. The optimized array design for operation over 5.0-6.6 GHz has an average gain and efficiency of 10 dBi and 83%, respectively. Results show that the array's performance is not greatly affected by a certain amount of bending. In fact, the antenna maintains a gain between 8.65-10.5 dBi and the efficiency between 77-83%. The proposed MIMO antenna array is relatively compact, can be easily fabricated on one side of a dielectric material, allows easy integration with RF circuitry, is robust, and maintains its characteristics with some bending. These features make it suitable for various wearable applications and biomedical telemetry devices. |
doi_str_mv | 10.1109/ACCESS.2022.3233388 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3233388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10004564</ieee_id><doaj_id>oai_doaj_org_article_5891caad87d5421981a6013ae12a042e</doaj_id><sourcerecordid>2761371872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43</originalsourceid><addsrcrecordid>eNpVkU9v00AQxS0EElXbTwCHlThxcNi_9vrohpZGSuihRT2uxrtjcHC8ZtdpyRfgc3eDK1TmMqOn937S6GXZO0YXjNHqU71cXt7eLjjlfCG4EELrV9kJZ0WVCyWK1y_ut9l5jFuaRidJlSfZnw1OEPehBYv5aohjF9CRqx5_d02P5B4hwPHYrDY3pB4mHAYgdQhwIK0P5D7Ze4yRXHh3SDoC-YrTow8_ST2OfWdh6vwQCQyOXHR-hy5JPblLoR1O4UA-40NnMZ5lb1roI54_79Ps29Xl3fI6X998WS3rdW6lFFPeMlUJB1pI2XAuFSDlpWNVw0rFsXVQOqq1ahqkqFRZNM4qi8gr2VhhQYrTbDVznYetGUO3g3AwHjrzV_Dhu4EwdbZHo3TFLIDTpVOSs0ozKCgTgIwDlRwT6-PM-gH9f6jrem2OGhWVorziDyx5P8zeMfhfe4yT2fp9GNKrhpcFEyXTJU8uMbts8DEGbP9hGTXHrs3ctTl2bZ67Tqn3c6pDxBcJSqUqpHgCl0qlDA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761371872</pqid></control><display><type>article</type><title>Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices</title><source>IEEE Open Access Journals</source><creator>Althuwayb, Ayman A. ; Alibakhshikenari, Mohammad ; Virdee, Bal S. ; Rashid, Nasr ; Kaaniche, Khaled ; Atitallah, Ahmed Ben ; Armghan, Ammar ; Elhamrawy, Osama I. ; See, Chan Hwan ; Falcone, Francisco</creator><creatorcontrib>Althuwayb, Ayman A. ; Alibakhshikenari, Mohammad ; Virdee, Bal S. ; Rashid, Nasr ; Kaaniche, Khaled ; Atitallah, Ahmed Ben ; Armghan, Ammar ; Elhamrawy, Osama I. ; See, Chan Hwan ; Falcone, Francisco</creatorcontrib><description>This article presents a sub-6GHz ISM-band flexible wearable MIMO antenna array for wireless body area networks (WBANs) and biomedical telemetry devices. The array is based on metasurface inspired technology. The antenna array consists of 2×2 matrix of triangular-shaped radiation elements that were realized on 0.8 mm thick Rogers RT/duroid 5880 substrate. Radiation characteristics of the array are enhanced by isolating the surface current interaction between the individual radiators in the array. This is achieved by inserting an electromagnetic bandgap (EBG) decoupling structure between the radiating elements. The radiating elements were transformed into a metasurface by etching sub-wavelength slots inside them. The periodic arrangement of slots acts like resonant scatterers that manipulate the electromagnetic response of the surface. Results confirm that by employing the decoupling structure and sub-wavelength slots the isolation between the radiators is significantly improved (>34.8 dB). Moreover, there is an improvement in the array's fractional bandwidth, gain and the radiation efficiency. The optimized array design for operation over 5.0-6.6 GHz has an average gain and efficiency of 10 dBi and 83%, respectively. Results show that the array's performance is not greatly affected by a certain amount of bending. In fact, the antenna maintains a gain between 8.65-10.5 dBi and the efficiency between 77-83%. The proposed MIMO antenna array is relatively compact, can be easily fabricated on one side of a dielectric material, allows easy integration with RF circuitry, is robust, and maintains its characteristics with some bending. These features make it suitable for various wearable applications and biomedical telemetry devices.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3233388</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Antenna arrays ; Antennas ; Bending ; Biomedical materials ; Biomedical monitoring ; biomedical telemetry devices ; Body area networks ; Circuits ; Decoupling ; Design optimization ; Efficiency ; electromagnetic bandgap (EBG) devices ; Engineering Sciences ; flexible antennas ; metasurface (MTS) antennas ; Metasurfaces ; MIMO antenna array ; MIMO communication ; On-body antennas ; Periodic structures ; Radiation ; Radiators ; Substrates ; Telemetry ; wearable antennas ; Wearable technology ; wireless body area network (WBAN) ; Wireless communication ; Wireless networks</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43</citedby><cites>FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43</cites><orcidid>0000-0003-4725-2072 ; 0000-0003-0625-6245 ; 0000-0001-7203-0039 ; 0000-0001-8439-7321 ; 0000-0002-4911-9753 ; 0000-0001-5160-5016 ; 0000-0002-2121-4417 ; 0000-0002-9062-7493 ; 0000-0002-8263-1572 ; 0000-0003-0421-587X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10004564$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27633,27924,27925,54933</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03950292$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Althuwayb, Ayman A.</creatorcontrib><creatorcontrib>Alibakhshikenari, Mohammad</creatorcontrib><creatorcontrib>Virdee, Bal S.</creatorcontrib><creatorcontrib>Rashid, Nasr</creatorcontrib><creatorcontrib>Kaaniche, Khaled</creatorcontrib><creatorcontrib>Atitallah, Ahmed Ben</creatorcontrib><creatorcontrib>Armghan, Ammar</creatorcontrib><creatorcontrib>Elhamrawy, Osama I.</creatorcontrib><creatorcontrib>See, Chan Hwan</creatorcontrib><creatorcontrib>Falcone, Francisco</creatorcontrib><title>Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article presents a sub-6GHz ISM-band flexible wearable MIMO antenna array for wireless body area networks (WBANs) and biomedical telemetry devices. The array is based on metasurface inspired technology. The antenna array consists of 2×2 matrix of triangular-shaped radiation elements that were realized on 0.8 mm thick Rogers RT/duroid 5880 substrate. Radiation characteristics of the array are enhanced by isolating the surface current interaction between the individual radiators in the array. This is achieved by inserting an electromagnetic bandgap (EBG) decoupling structure between the radiating elements. The radiating elements were transformed into a metasurface by etching sub-wavelength slots inside them. The periodic arrangement of slots acts like resonant scatterers that manipulate the electromagnetic response of the surface. Results confirm that by employing the decoupling structure and sub-wavelength slots the isolation between the radiators is significantly improved (>34.8 dB). Moreover, there is an improvement in the array's fractional bandwidth, gain and the radiation efficiency. The optimized array design for operation over 5.0-6.6 GHz has an average gain and efficiency of 10 dBi and 83%, respectively. Results show that the array's performance is not greatly affected by a certain amount of bending. In fact, the antenna maintains a gain between 8.65-10.5 dBi and the efficiency between 77-83%. The proposed MIMO antenna array is relatively compact, can be easily fabricated on one side of a dielectric material, allows easy integration with RF circuitry, is robust, and maintains its characteristics with some bending. These features make it suitable for various wearable applications and biomedical telemetry devices.</description><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Bending</subject><subject>Biomedical materials</subject><subject>Biomedical monitoring</subject><subject>biomedical telemetry devices</subject><subject>Body area networks</subject><subject>Circuits</subject><subject>Decoupling</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>electromagnetic bandgap (EBG) devices</subject><subject>Engineering Sciences</subject><subject>flexible antennas</subject><subject>metasurface (MTS) antennas</subject><subject>Metasurfaces</subject><subject>MIMO antenna array</subject><subject>MIMO communication</subject><subject>On-body antennas</subject><subject>Periodic structures</subject><subject>Radiation</subject><subject>Radiators</subject><subject>Substrates</subject><subject>Telemetry</subject><subject>wearable antennas</subject><subject>Wearable technology</subject><subject>wireless body area network (WBAN)</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU9v00AQxS0EElXbTwCHlThxcNi_9vrohpZGSuihRT2uxrtjcHC8ZtdpyRfgc3eDK1TmMqOn937S6GXZO0YXjNHqU71cXt7eLjjlfCG4EELrV9kJZ0WVCyWK1y_ut9l5jFuaRidJlSfZnw1OEPehBYv5aohjF9CRqx5_d02P5B4hwPHYrDY3pB4mHAYgdQhwIK0P5D7Ze4yRXHh3SDoC-YrTow8_ST2OfWdh6vwQCQyOXHR-hy5JPblLoR1O4UA-40NnMZ5lb1roI54_79Ps29Xl3fI6X998WS3rdW6lFFPeMlUJB1pI2XAuFSDlpWNVw0rFsXVQOqq1ahqkqFRZNM4qi8gr2VhhQYrTbDVznYetGUO3g3AwHjrzV_Dhu4EwdbZHo3TFLIDTpVOSs0ozKCgTgIwDlRwT6-PM-gH9f6jrem2OGhWVorziDyx5P8zeMfhfe4yT2fp9GNKrhpcFEyXTJU8uMbts8DEGbP9hGTXHrs3ctTl2bZ67Tqn3c6pDxBcJSqUqpHgCl0qlDA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Althuwayb, Ayman A.</creator><creator>Alibakhshikenari, Mohammad</creator><creator>Virdee, Bal S.</creator><creator>Rashid, Nasr</creator><creator>Kaaniche, Khaled</creator><creator>Atitallah, Ahmed Ben</creator><creator>Armghan, Ammar</creator><creator>Elhamrawy, Osama I.</creator><creator>See, Chan Hwan</creator><creator>Falcone, Francisco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4725-2072</orcidid><orcidid>https://orcid.org/0000-0003-0625-6245</orcidid><orcidid>https://orcid.org/0000-0001-7203-0039</orcidid><orcidid>https://orcid.org/0000-0001-8439-7321</orcidid><orcidid>https://orcid.org/0000-0002-4911-9753</orcidid><orcidid>https://orcid.org/0000-0001-5160-5016</orcidid><orcidid>https://orcid.org/0000-0002-2121-4417</orcidid><orcidid>https://orcid.org/0000-0002-9062-7493</orcidid><orcidid>https://orcid.org/0000-0002-8263-1572</orcidid><orcidid>https://orcid.org/0000-0003-0421-587X</orcidid></search><sort><creationdate>20230101</creationdate><title>Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices</title><author>Althuwayb, Ayman A. ; Alibakhshikenari, Mohammad ; Virdee, Bal S. ; Rashid, Nasr ; Kaaniche, Khaled ; Atitallah, Ahmed Ben ; Armghan, Ammar ; Elhamrawy, Osama I. ; See, Chan Hwan ; Falcone, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Bending</topic><topic>Biomedical materials</topic><topic>Biomedical monitoring</topic><topic>biomedical telemetry devices</topic><topic>Body area networks</topic><topic>Circuits</topic><topic>Decoupling</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>electromagnetic bandgap (EBG) devices</topic><topic>Engineering Sciences</topic><topic>flexible antennas</topic><topic>metasurface (MTS) antennas</topic><topic>Metasurfaces</topic><topic>MIMO antenna array</topic><topic>MIMO communication</topic><topic>On-body antennas</topic><topic>Periodic structures</topic><topic>Radiation</topic><topic>Radiators</topic><topic>Substrates</topic><topic>Telemetry</topic><topic>wearable antennas</topic><topic>Wearable technology</topic><topic>wireless body area network (WBAN)</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Althuwayb, Ayman A.</creatorcontrib><creatorcontrib>Alibakhshikenari, Mohammad</creatorcontrib><creatorcontrib>Virdee, Bal S.</creatorcontrib><creatorcontrib>Rashid, Nasr</creatorcontrib><creatorcontrib>Kaaniche, Khaled</creatorcontrib><creatorcontrib>Atitallah, Ahmed Ben</creatorcontrib><creatorcontrib>Armghan, Ammar</creatorcontrib><creatorcontrib>Elhamrawy, Osama I.</creatorcontrib><creatorcontrib>See, Chan Hwan</creatorcontrib><creatorcontrib>Falcone, Francisco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Althuwayb, Ayman A.</au><au>Alibakhshikenari, Mohammad</au><au>Virdee, Bal S.</au><au>Rashid, Nasr</au><au>Kaaniche, Khaled</au><au>Atitallah, Ahmed Ben</au><au>Armghan, Ammar</au><au>Elhamrawy, Osama I.</au><au>See, Chan Hwan</au><au>Falcone, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article presents a sub-6GHz ISM-band flexible wearable MIMO antenna array for wireless body area networks (WBANs) and biomedical telemetry devices. The array is based on metasurface inspired technology. The antenna array consists of 2×2 matrix of triangular-shaped radiation elements that were realized on 0.8 mm thick Rogers RT/duroid 5880 substrate. Radiation characteristics of the array are enhanced by isolating the surface current interaction between the individual radiators in the array. This is achieved by inserting an electromagnetic bandgap (EBG) decoupling structure between the radiating elements. The radiating elements were transformed into a metasurface by etching sub-wavelength slots inside them. The periodic arrangement of slots acts like resonant scatterers that manipulate the electromagnetic response of the surface. Results confirm that by employing the decoupling structure and sub-wavelength slots the isolation between the radiators is significantly improved (>34.8 dB). Moreover, there is an improvement in the array's fractional bandwidth, gain and the radiation efficiency. The optimized array design for operation over 5.0-6.6 GHz has an average gain and efficiency of 10 dBi and 83%, respectively. Results show that the array's performance is not greatly affected by a certain amount of bending. In fact, the antenna maintains a gain between 8.65-10.5 dBi and the efficiency between 77-83%. The proposed MIMO antenna array is relatively compact, can be easily fabricated on one side of a dielectric material, allows easy integration with RF circuitry, is robust, and maintains its characteristics with some bending. These features make it suitable for various wearable applications and biomedical telemetry devices.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3233388</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4725-2072</orcidid><orcidid>https://orcid.org/0000-0003-0625-6245</orcidid><orcidid>https://orcid.org/0000-0001-7203-0039</orcidid><orcidid>https://orcid.org/0000-0001-8439-7321</orcidid><orcidid>https://orcid.org/0000-0002-4911-9753</orcidid><orcidid>https://orcid.org/0000-0001-5160-5016</orcidid><orcidid>https://orcid.org/0000-0002-2121-4417</orcidid><orcidid>https://orcid.org/0000-0002-9062-7493</orcidid><orcidid>https://orcid.org/0000-0002-8263-1572</orcidid><orcidid>https://orcid.org/0000-0003-0421-587X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2022_3233388 |
source | IEEE Open Access Journals |
subjects | Antenna arrays Antennas Bending Biomedical materials Biomedical monitoring biomedical telemetry devices Body area networks Circuits Decoupling Design optimization Efficiency electromagnetic bandgap (EBG) devices Engineering Sciences flexible antennas metasurface (MTS) antennas Metasurfaces MIMO antenna array MIMO communication On-body antennas Periodic structures Radiation Radiators Substrates Telemetry wearable antennas Wearable technology wireless body area network (WBAN) Wireless communication Wireless networks |
title | Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metasurface-Inspired%20Flexible%20Wearable%20MIMO%20Antenna%20Array%20for%20Wireless%20Body%20Area%20Network%20Applications%20and%20Biomedical%20Telemetry%20Devices&rft.jtitle=IEEE%20access&rft.au=Althuwayb,%20Ayman%20A.&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3233388&rft_dat=%3Cproquest_cross%3E2761371872%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761371872&rft_id=info:pmid/&rft_ieee_id=10004564&rfr_iscdi=true |