Loading…

Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices

This article presents a sub-6GHz ISM-band flexible wearable MIMO antenna array for wireless body area networks (WBANs) and biomedical telemetry devices. The array is based on metasurface inspired technology. The antenna array consists of 2×2 matrix of triangular-shaped radiation elements that were r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023-01, Vol.11, p.1-1
Main Authors: Althuwayb, Ayman A., Alibakhshikenari, Mohammad, Virdee, Bal S., Rashid, Nasr, Kaaniche, Khaled, Atitallah, Ahmed Ben, Armghan, Ammar, Elhamrawy, Osama I., See, Chan Hwan, Falcone, Francisco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43
cites cdi_FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Althuwayb, Ayman A.
Alibakhshikenari, Mohammad
Virdee, Bal S.
Rashid, Nasr
Kaaniche, Khaled
Atitallah, Ahmed Ben
Armghan, Ammar
Elhamrawy, Osama I.
See, Chan Hwan
Falcone, Francisco
description This article presents a sub-6GHz ISM-band flexible wearable MIMO antenna array for wireless body area networks (WBANs) and biomedical telemetry devices. The array is based on metasurface inspired technology. The antenna array consists of 2×2 matrix of triangular-shaped radiation elements that were realized on 0.8 mm thick Rogers RT/duroid 5880 substrate. Radiation characteristics of the array are enhanced by isolating the surface current interaction between the individual radiators in the array. This is achieved by inserting an electromagnetic bandgap (EBG) decoupling structure between the radiating elements. The radiating elements were transformed into a metasurface by etching sub-wavelength slots inside them. The periodic arrangement of slots acts like resonant scatterers that manipulate the electromagnetic response of the surface. Results confirm that by employing the decoupling structure and sub-wavelength slots the isolation between the radiators is significantly improved (>34.8 dB). Moreover, there is an improvement in the array's fractional bandwidth, gain and the radiation efficiency. The optimized array design for operation over 5.0-6.6 GHz has an average gain and efficiency of 10 dBi and 83%, respectively. Results show that the array's performance is not greatly affected by a certain amount of bending. In fact, the antenna maintains a gain between 8.65-10.5 dBi and the efficiency between 77-83%. The proposed MIMO antenna array is relatively compact, can be easily fabricated on one side of a dielectric material, allows easy integration with RF circuitry, is robust, and maintains its characteristics with some bending. These features make it suitable for various wearable applications and biomedical telemetry devices.
doi_str_mv 10.1109/ACCESS.2022.3233388
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2022_3233388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10004564</ieee_id><doaj_id>oai_doaj_org_article_5891caad87d5421981a6013ae12a042e</doaj_id><sourcerecordid>2761371872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43</originalsourceid><addsrcrecordid>eNpVkU9v00AQxS0EElXbTwCHlThxcNi_9vrohpZGSuihRT2uxrtjcHC8ZtdpyRfgc3eDK1TmMqOn937S6GXZO0YXjNHqU71cXt7eLjjlfCG4EELrV9kJZ0WVCyWK1y_ut9l5jFuaRidJlSfZnw1OEPehBYv5aohjF9CRqx5_d02P5B4hwPHYrDY3pB4mHAYgdQhwIK0P5D7Ze4yRXHh3SDoC-YrTow8_ST2OfWdh6vwQCQyOXHR-hy5JPblLoR1O4UA-40NnMZ5lb1roI54_79Ps29Xl3fI6X998WS3rdW6lFFPeMlUJB1pI2XAuFSDlpWNVw0rFsXVQOqq1ahqkqFRZNM4qi8gr2VhhQYrTbDVznYetGUO3g3AwHjrzV_Dhu4EwdbZHo3TFLIDTpVOSs0ozKCgTgIwDlRwT6-PM-gH9f6jrem2OGhWVorziDyx5P8zeMfhfe4yT2fp9GNKrhpcFEyXTJU8uMbts8DEGbP9hGTXHrs3ctTl2bZ67Tqn3c6pDxBcJSqUqpHgCl0qlDA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761371872</pqid></control><display><type>article</type><title>Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices</title><source>IEEE Open Access Journals</source><creator>Althuwayb, Ayman A. ; Alibakhshikenari, Mohammad ; Virdee, Bal S. ; Rashid, Nasr ; Kaaniche, Khaled ; Atitallah, Ahmed Ben ; Armghan, Ammar ; Elhamrawy, Osama I. ; See, Chan Hwan ; Falcone, Francisco</creator><creatorcontrib>Althuwayb, Ayman A. ; Alibakhshikenari, Mohammad ; Virdee, Bal S. ; Rashid, Nasr ; Kaaniche, Khaled ; Atitallah, Ahmed Ben ; Armghan, Ammar ; Elhamrawy, Osama I. ; See, Chan Hwan ; Falcone, Francisco</creatorcontrib><description>This article presents a sub-6GHz ISM-band flexible wearable MIMO antenna array for wireless body area networks (WBANs) and biomedical telemetry devices. The array is based on metasurface inspired technology. The antenna array consists of 2×2 matrix of triangular-shaped radiation elements that were realized on 0.8 mm thick Rogers RT/duroid 5880 substrate. Radiation characteristics of the array are enhanced by isolating the surface current interaction between the individual radiators in the array. This is achieved by inserting an electromagnetic bandgap (EBG) decoupling structure between the radiating elements. The radiating elements were transformed into a metasurface by etching sub-wavelength slots inside them. The periodic arrangement of slots acts like resonant scatterers that manipulate the electromagnetic response of the surface. Results confirm that by employing the decoupling structure and sub-wavelength slots the isolation between the radiators is significantly improved (&gt;34.8 dB). Moreover, there is an improvement in the array's fractional bandwidth, gain and the radiation efficiency. The optimized array design for operation over 5.0-6.6 GHz has an average gain and efficiency of 10 dBi and 83%, respectively. Results show that the array's performance is not greatly affected by a certain amount of bending. In fact, the antenna maintains a gain between 8.65-10.5 dBi and the efficiency between 77-83%. The proposed MIMO antenna array is relatively compact, can be easily fabricated on one side of a dielectric material, allows easy integration with RF circuitry, is robust, and maintains its characteristics with some bending. These features make it suitable for various wearable applications and biomedical telemetry devices.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3233388</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Antenna arrays ; Antennas ; Bending ; Biomedical materials ; Biomedical monitoring ; biomedical telemetry devices ; Body area networks ; Circuits ; Decoupling ; Design optimization ; Efficiency ; electromagnetic bandgap (EBG) devices ; Engineering Sciences ; flexible antennas ; metasurface (MTS) antennas ; Metasurfaces ; MIMO antenna array ; MIMO communication ; On-body antennas ; Periodic structures ; Radiation ; Radiators ; Substrates ; Telemetry ; wearable antennas ; Wearable technology ; wireless body area network (WBAN) ; Wireless communication ; Wireless networks</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43</citedby><cites>FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43</cites><orcidid>0000-0003-4725-2072 ; 0000-0003-0625-6245 ; 0000-0001-7203-0039 ; 0000-0001-8439-7321 ; 0000-0002-4911-9753 ; 0000-0001-5160-5016 ; 0000-0002-2121-4417 ; 0000-0002-9062-7493 ; 0000-0002-8263-1572 ; 0000-0003-0421-587X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10004564$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27633,27924,27925,54933</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03950292$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Althuwayb, Ayman A.</creatorcontrib><creatorcontrib>Alibakhshikenari, Mohammad</creatorcontrib><creatorcontrib>Virdee, Bal S.</creatorcontrib><creatorcontrib>Rashid, Nasr</creatorcontrib><creatorcontrib>Kaaniche, Khaled</creatorcontrib><creatorcontrib>Atitallah, Ahmed Ben</creatorcontrib><creatorcontrib>Armghan, Ammar</creatorcontrib><creatorcontrib>Elhamrawy, Osama I.</creatorcontrib><creatorcontrib>See, Chan Hwan</creatorcontrib><creatorcontrib>Falcone, Francisco</creatorcontrib><title>Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article presents a sub-6GHz ISM-band flexible wearable MIMO antenna array for wireless body area networks (WBANs) and biomedical telemetry devices. The array is based on metasurface inspired technology. The antenna array consists of 2×2 matrix of triangular-shaped radiation elements that were realized on 0.8 mm thick Rogers RT/duroid 5880 substrate. Radiation characteristics of the array are enhanced by isolating the surface current interaction between the individual radiators in the array. This is achieved by inserting an electromagnetic bandgap (EBG) decoupling structure between the radiating elements. The radiating elements were transformed into a metasurface by etching sub-wavelength slots inside them. The periodic arrangement of slots acts like resonant scatterers that manipulate the electromagnetic response of the surface. Results confirm that by employing the decoupling structure and sub-wavelength slots the isolation between the radiators is significantly improved (&gt;34.8 dB). Moreover, there is an improvement in the array's fractional bandwidth, gain and the radiation efficiency. The optimized array design for operation over 5.0-6.6 GHz has an average gain and efficiency of 10 dBi and 83%, respectively. Results show that the array's performance is not greatly affected by a certain amount of bending. In fact, the antenna maintains a gain between 8.65-10.5 dBi and the efficiency between 77-83%. The proposed MIMO antenna array is relatively compact, can be easily fabricated on one side of a dielectric material, allows easy integration with RF circuitry, is robust, and maintains its characteristics with some bending. These features make it suitable for various wearable applications and biomedical telemetry devices.</description><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Bending</subject><subject>Biomedical materials</subject><subject>Biomedical monitoring</subject><subject>biomedical telemetry devices</subject><subject>Body area networks</subject><subject>Circuits</subject><subject>Decoupling</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>electromagnetic bandgap (EBG) devices</subject><subject>Engineering Sciences</subject><subject>flexible antennas</subject><subject>metasurface (MTS) antennas</subject><subject>Metasurfaces</subject><subject>MIMO antenna array</subject><subject>MIMO communication</subject><subject>On-body antennas</subject><subject>Periodic structures</subject><subject>Radiation</subject><subject>Radiators</subject><subject>Substrates</subject><subject>Telemetry</subject><subject>wearable antennas</subject><subject>Wearable technology</subject><subject>wireless body area network (WBAN)</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU9v00AQxS0EElXbTwCHlThxcNi_9vrohpZGSuihRT2uxrtjcHC8ZtdpyRfgc3eDK1TmMqOn937S6GXZO0YXjNHqU71cXt7eLjjlfCG4EELrV9kJZ0WVCyWK1y_ut9l5jFuaRidJlSfZnw1OEPehBYv5aohjF9CRqx5_d02P5B4hwPHYrDY3pB4mHAYgdQhwIK0P5D7Ze4yRXHh3SDoC-YrTow8_ST2OfWdh6vwQCQyOXHR-hy5JPblLoR1O4UA-40NnMZ5lb1roI54_79Ps29Xl3fI6X998WS3rdW6lFFPeMlUJB1pI2XAuFSDlpWNVw0rFsXVQOqq1ahqkqFRZNM4qi8gr2VhhQYrTbDVznYetGUO3g3AwHjrzV_Dhu4EwdbZHo3TFLIDTpVOSs0ozKCgTgIwDlRwT6-PM-gH9f6jrem2OGhWVorziDyx5P8zeMfhfe4yT2fp9GNKrhpcFEyXTJU8uMbts8DEGbP9hGTXHrs3ctTl2bZ67Tqn3c6pDxBcJSqUqpHgCl0qlDA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Althuwayb, Ayman A.</creator><creator>Alibakhshikenari, Mohammad</creator><creator>Virdee, Bal S.</creator><creator>Rashid, Nasr</creator><creator>Kaaniche, Khaled</creator><creator>Atitallah, Ahmed Ben</creator><creator>Armghan, Ammar</creator><creator>Elhamrawy, Osama I.</creator><creator>See, Chan Hwan</creator><creator>Falcone, Francisco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4725-2072</orcidid><orcidid>https://orcid.org/0000-0003-0625-6245</orcidid><orcidid>https://orcid.org/0000-0001-7203-0039</orcidid><orcidid>https://orcid.org/0000-0001-8439-7321</orcidid><orcidid>https://orcid.org/0000-0002-4911-9753</orcidid><orcidid>https://orcid.org/0000-0001-5160-5016</orcidid><orcidid>https://orcid.org/0000-0002-2121-4417</orcidid><orcidid>https://orcid.org/0000-0002-9062-7493</orcidid><orcidid>https://orcid.org/0000-0002-8263-1572</orcidid><orcidid>https://orcid.org/0000-0003-0421-587X</orcidid></search><sort><creationdate>20230101</creationdate><title>Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices</title><author>Althuwayb, Ayman A. ; Alibakhshikenari, Mohammad ; Virdee, Bal S. ; Rashid, Nasr ; Kaaniche, Khaled ; Atitallah, Ahmed Ben ; Armghan, Ammar ; Elhamrawy, Osama I. ; See, Chan Hwan ; Falcone, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Bending</topic><topic>Biomedical materials</topic><topic>Biomedical monitoring</topic><topic>biomedical telemetry devices</topic><topic>Body area networks</topic><topic>Circuits</topic><topic>Decoupling</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>electromagnetic bandgap (EBG) devices</topic><topic>Engineering Sciences</topic><topic>flexible antennas</topic><topic>metasurface (MTS) antennas</topic><topic>Metasurfaces</topic><topic>MIMO antenna array</topic><topic>MIMO communication</topic><topic>On-body antennas</topic><topic>Periodic structures</topic><topic>Radiation</topic><topic>Radiators</topic><topic>Substrates</topic><topic>Telemetry</topic><topic>wearable antennas</topic><topic>Wearable technology</topic><topic>wireless body area network (WBAN)</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Althuwayb, Ayman A.</creatorcontrib><creatorcontrib>Alibakhshikenari, Mohammad</creatorcontrib><creatorcontrib>Virdee, Bal S.</creatorcontrib><creatorcontrib>Rashid, Nasr</creatorcontrib><creatorcontrib>Kaaniche, Khaled</creatorcontrib><creatorcontrib>Atitallah, Ahmed Ben</creatorcontrib><creatorcontrib>Armghan, Ammar</creatorcontrib><creatorcontrib>Elhamrawy, Osama I.</creatorcontrib><creatorcontrib>See, Chan Hwan</creatorcontrib><creatorcontrib>Falcone, Francisco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Althuwayb, Ayman A.</au><au>Alibakhshikenari, Mohammad</au><au>Virdee, Bal S.</au><au>Rashid, Nasr</au><au>Kaaniche, Khaled</au><au>Atitallah, Ahmed Ben</au><au>Armghan, Ammar</au><au>Elhamrawy, Osama I.</au><au>See, Chan Hwan</au><au>Falcone, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article presents a sub-6GHz ISM-band flexible wearable MIMO antenna array for wireless body area networks (WBANs) and biomedical telemetry devices. The array is based on metasurface inspired technology. The antenna array consists of 2×2 matrix of triangular-shaped radiation elements that were realized on 0.8 mm thick Rogers RT/duroid 5880 substrate. Radiation characteristics of the array are enhanced by isolating the surface current interaction between the individual radiators in the array. This is achieved by inserting an electromagnetic bandgap (EBG) decoupling structure between the radiating elements. The radiating elements were transformed into a metasurface by etching sub-wavelength slots inside them. The periodic arrangement of slots acts like resonant scatterers that manipulate the electromagnetic response of the surface. Results confirm that by employing the decoupling structure and sub-wavelength slots the isolation between the radiators is significantly improved (&gt;34.8 dB). Moreover, there is an improvement in the array's fractional bandwidth, gain and the radiation efficiency. The optimized array design for operation over 5.0-6.6 GHz has an average gain and efficiency of 10 dBi and 83%, respectively. Results show that the array's performance is not greatly affected by a certain amount of bending. In fact, the antenna maintains a gain between 8.65-10.5 dBi and the efficiency between 77-83%. The proposed MIMO antenna array is relatively compact, can be easily fabricated on one side of a dielectric material, allows easy integration with RF circuitry, is robust, and maintains its characteristics with some bending. These features make it suitable for various wearable applications and biomedical telemetry devices.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3233388</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4725-2072</orcidid><orcidid>https://orcid.org/0000-0003-0625-6245</orcidid><orcidid>https://orcid.org/0000-0001-7203-0039</orcidid><orcidid>https://orcid.org/0000-0001-8439-7321</orcidid><orcidid>https://orcid.org/0000-0002-4911-9753</orcidid><orcidid>https://orcid.org/0000-0001-5160-5016</orcidid><orcidid>https://orcid.org/0000-0002-2121-4417</orcidid><orcidid>https://orcid.org/0000-0002-9062-7493</orcidid><orcidid>https://orcid.org/0000-0002-8263-1572</orcidid><orcidid>https://orcid.org/0000-0003-0421-587X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2022_3233388
source IEEE Open Access Journals
subjects Antenna arrays
Antennas
Bending
Biomedical materials
Biomedical monitoring
biomedical telemetry devices
Body area networks
Circuits
Decoupling
Design optimization
Efficiency
electromagnetic bandgap (EBG) devices
Engineering Sciences
flexible antennas
metasurface (MTS) antennas
Metasurfaces
MIMO antenna array
MIMO communication
On-body antennas
Periodic structures
Radiation
Radiators
Substrates
Telemetry
wearable antennas
Wearable technology
wireless body area network (WBAN)
Wireless communication
Wireless networks
title Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metasurface-Inspired%20Flexible%20Wearable%20MIMO%20Antenna%20Array%20for%20Wireless%20Body%20Area%20Network%20Applications%20and%20Biomedical%20Telemetry%20Devices&rft.jtitle=IEEE%20access&rft.au=Althuwayb,%20Ayman%20A.&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3233388&rft_dat=%3Cproquest_cross%3E2761371872%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-f1593da8344b2245ae027d19b1752efda7d0885bbe0e5576bdc5cee294bc3ca43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761371872&rft_id=info:pmid/&rft_ieee_id=10004564&rfr_iscdi=true