Loading…

Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation

Feedrate scheduling is one of the most critical technologies in CNC machining, requiring a reasonable balance between efficiency and quality. This paper proposes a jerk-continuous feedrate smoothing (JCFS) method to generate a low-vibration and smooth feedrate profile for non-uniform rational B-spli...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023, Vol.11, p.25664-25681
Main Authors: Nie, Mingxing, Zou, Liwei, Zhu, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3
cites cdi_FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3
container_end_page 25681
container_issue
container_start_page 25664
container_title IEEE access
container_volume 11
creator Nie, Mingxing
Zou, Liwei
Zhu, Tao
description Feedrate scheduling is one of the most critical technologies in CNC machining, requiring a reasonable balance between efficiency and quality. This paper proposes a jerk-continuous feedrate smoothing (JCFS) method to generate a low-vibration and smooth feedrate profile for non-uniform rational B-spline (NURBS) interpolation. Firstly, the segmentation concept is introduced to subdivide the entire trajectory into segments to accommodate curvature changes of the NURBS curve, accelerating the acceleration/deceleration process. Secondly, a length threshold-based curve segment classification method is proposed to overcome the complexity of the traditional acceleration and deceleration algorithms. The curve segments are divided into long, medium, and short types, and the length threshold calculation model is derived. Next, to avoid computational complexity for engineering applications, a model is established for the first time to calculate the actual maximum feedrate for different types of segments. Finally, the horizontal-8-shaped and butterfly-shaped NURBS curves are simulated and analyzed. The simulation results indicate that the machining quality is steadily improved while several key indicators remain within the given tolerances. Compared with the traditional method, the proposed method reduces the computational and interpolation time by 17.2% and 22.8%, respectively, demonstrating the feasibility and effectiveness of the method.
doi_str_mv 10.1109/ACCESS.2023.3248081
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3248081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10050517</ieee_id><doaj_id>oai_doaj_org_article_5d133ceb462a4ab199149f62ca58a72c</doaj_id><sourcerecordid>2789464802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRSMEElXhC2ARiXWKn3G8LKGFIh4SpWvLjqeQ0sbFcRbw9bikQvXG1vjeOzMnSS4wGmGM5PW4LCfz-YggQkeUsAIV-CgZEJzLjHKaHx-8T5Pztl2heIpY4mKQ3D6A_8xK14S66VzXplMA63WA9GUb6k39o0PtmvQJwoez6dL59HnxejNPZ00Av3Xrv--z5GSp1y2c7-9hsphO3sr77PHlblaOH7OKIRkyKQFxVAmkbW5shQsrDWfcMAGyEBYQQUYaK6IsN5pZBIwxsBwZhkRBLB0msz7XOr1SW19vtP9WTtfqr-D8u9I-1NUaFLeY0goMy4lm2mApMZPLnFSaF1qQKmZd9Vlb7746aINauc43cXxFRCFZHkGSqKK9qvKubT0s_7tipHb0VU9f7eirPf3ouuxdNQAcOOL2HAv6C9X-f7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789464802</pqid></control><display><type>article</type><title>Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation</title><source>IEEE Xplore Open Access Journals</source><creator>Nie, Mingxing ; Zou, Liwei ; Zhu, Tao</creator><creatorcontrib>Nie, Mingxing ; Zou, Liwei ; Zhu, Tao</creatorcontrib><description>Feedrate scheduling is one of the most critical technologies in CNC machining, requiring a reasonable balance between efficiency and quality. This paper proposes a jerk-continuous feedrate smoothing (JCFS) method to generate a low-vibration and smooth feedrate profile for non-uniform rational B-spline (NURBS) interpolation. Firstly, the segmentation concept is introduced to subdivide the entire trajectory into segments to accommodate curvature changes of the NURBS curve, accelerating the acceleration/deceleration process. Secondly, a length threshold-based curve segment classification method is proposed to overcome the complexity of the traditional acceleration and deceleration algorithms. The curve segments are divided into long, medium, and short types, and the length threshold calculation model is derived. Next, to avoid computational complexity for engineering applications, a model is established for the first time to calculate the actual maximum feedrate for different types of segments. Finally, the horizontal-8-shaped and butterfly-shaped NURBS curves are simulated and analyzed. The simulation results indicate that the machining quality is steadily improved while several key indicators remain within the given tolerances. Compared with the traditional method, the proposed method reduces the computational and interpolation time by 17.2% and 22.8%, respectively, demonstrating the feasibility and effectiveness of the method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3248081</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Algorithms ; B spline functions ; Complexity ; Deceleration ; Feedrate scheduling ; Interpolation ; jerk-continuous ; Machining ; NURBS interpolation ; Optimization ; segmentation ; Segments ; Smoothing methods ; Splines (mathematics) ; Surface reconstruction ; Surface topography ; Tolerances ; Trajectory</subject><ispartof>IEEE access, 2023, Vol.11, p.25664-25681</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3</citedby><cites>FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3</cites><orcidid>0000-0002-2720-0470 ; 0000-0002-5879-5980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10050517$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Nie, Mingxing</creatorcontrib><creatorcontrib>Zou, Liwei</creatorcontrib><creatorcontrib>Zhu, Tao</creatorcontrib><title>Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Feedrate scheduling is one of the most critical technologies in CNC machining, requiring a reasonable balance between efficiency and quality. This paper proposes a jerk-continuous feedrate smoothing (JCFS) method to generate a low-vibration and smooth feedrate profile for non-uniform rational B-spline (NURBS) interpolation. Firstly, the segmentation concept is introduced to subdivide the entire trajectory into segments to accommodate curvature changes of the NURBS curve, accelerating the acceleration/deceleration process. Secondly, a length threshold-based curve segment classification method is proposed to overcome the complexity of the traditional acceleration and deceleration algorithms. The curve segments are divided into long, medium, and short types, and the length threshold calculation model is derived. Next, to avoid computational complexity for engineering applications, a model is established for the first time to calculate the actual maximum feedrate for different types of segments. Finally, the horizontal-8-shaped and butterfly-shaped NURBS curves are simulated and analyzed. The simulation results indicate that the machining quality is steadily improved while several key indicators remain within the given tolerances. Compared with the traditional method, the proposed method reduces the computational and interpolation time by 17.2% and 22.8%, respectively, demonstrating the feasibility and effectiveness of the method.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>B spline functions</subject><subject>Complexity</subject><subject>Deceleration</subject><subject>Feedrate scheduling</subject><subject>Interpolation</subject><subject>jerk-continuous</subject><subject>Machining</subject><subject>NURBS interpolation</subject><subject>Optimization</subject><subject>segmentation</subject><subject>Segments</subject><subject>Smoothing methods</subject><subject>Splines (mathematics)</subject><subject>Surface reconstruction</subject><subject>Surface topography</subject><subject>Tolerances</subject><subject>Trajectory</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMtOwzAQRSMEElXhC2ARiXWKn3G8LKGFIh4SpWvLjqeQ0sbFcRbw9bikQvXG1vjeOzMnSS4wGmGM5PW4LCfz-YggQkeUsAIV-CgZEJzLjHKaHx-8T5Pztl2heIpY4mKQ3D6A_8xK14S66VzXplMA63WA9GUb6k39o0PtmvQJwoez6dL59HnxejNPZ00Av3Xrv--z5GSp1y2c7-9hsphO3sr77PHlblaOH7OKIRkyKQFxVAmkbW5shQsrDWfcMAGyEBYQQUYaK6IsN5pZBIwxsBwZhkRBLB0msz7XOr1SW19vtP9WTtfqr-D8u9I-1NUaFLeY0goMy4lm2mApMZPLnFSaF1qQKmZd9Vlb7746aINauc43cXxFRCFZHkGSqKK9qvKubT0s_7tipHb0VU9f7eirPf3ouuxdNQAcOOL2HAv6C9X-f7A</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Nie, Mingxing</creator><creator>Zou, Liwei</creator><creator>Zhu, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2720-0470</orcidid><orcidid>https://orcid.org/0000-0002-5879-5980</orcidid></search><sort><creationdate>2023</creationdate><title>Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation</title><author>Nie, Mingxing ; Zou, Liwei ; Zhu, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>B spline functions</topic><topic>Complexity</topic><topic>Deceleration</topic><topic>Feedrate scheduling</topic><topic>Interpolation</topic><topic>jerk-continuous</topic><topic>Machining</topic><topic>NURBS interpolation</topic><topic>Optimization</topic><topic>segmentation</topic><topic>Segments</topic><topic>Smoothing methods</topic><topic>Splines (mathematics)</topic><topic>Surface reconstruction</topic><topic>Surface topography</topic><topic>Tolerances</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Mingxing</creatorcontrib><creatorcontrib>Zou, Liwei</creatorcontrib><creatorcontrib>Zhu, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Mingxing</au><au>Zou, Liwei</au><au>Zhu, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>25664</spage><epage>25681</epage><pages>25664-25681</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Feedrate scheduling is one of the most critical technologies in CNC machining, requiring a reasonable balance between efficiency and quality. This paper proposes a jerk-continuous feedrate smoothing (JCFS) method to generate a low-vibration and smooth feedrate profile for non-uniform rational B-spline (NURBS) interpolation. Firstly, the segmentation concept is introduced to subdivide the entire trajectory into segments to accommodate curvature changes of the NURBS curve, accelerating the acceleration/deceleration process. Secondly, a length threshold-based curve segment classification method is proposed to overcome the complexity of the traditional acceleration and deceleration algorithms. The curve segments are divided into long, medium, and short types, and the length threshold calculation model is derived. Next, to avoid computational complexity for engineering applications, a model is established for the first time to calculate the actual maximum feedrate for different types of segments. Finally, the horizontal-8-shaped and butterfly-shaped NURBS curves are simulated and analyzed. The simulation results indicate that the machining quality is steadily improved while several key indicators remain within the given tolerances. Compared with the traditional method, the proposed method reduces the computational and interpolation time by 17.2% and 22.8%, respectively, demonstrating the feasibility and effectiveness of the method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3248081</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2720-0470</orcidid><orcidid>https://orcid.org/0000-0002-5879-5980</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.25664-25681
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3248081
source IEEE Xplore Open Access Journals
subjects Acceleration
Algorithms
B spline functions
Complexity
Deceleration
Feedrate scheduling
Interpolation
jerk-continuous
Machining
NURBS interpolation
Optimization
segmentation
Segments
Smoothing methods
Splines (mathematics)
Surface reconstruction
Surface topography
Tolerances
Trajectory
title Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jerk-Continuous%20Feedrate%20Optimization%20Method%20for%20NURBS%20Interpolation&rft.jtitle=IEEE%20access&rft.au=Nie,%20Mingxing&rft.date=2023&rft.volume=11&rft.spage=25664&rft.epage=25681&rft.pages=25664-25681&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3248081&rft_dat=%3Cproquest_cross%3E2789464802%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789464802&rft_id=info:pmid/&rft_ieee_id=10050517&rfr_iscdi=true