Loading…
Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation
Feedrate scheduling is one of the most critical technologies in CNC machining, requiring a reasonable balance between efficiency and quality. This paper proposes a jerk-continuous feedrate smoothing (JCFS) method to generate a low-vibration and smooth feedrate profile for non-uniform rational B-spli...
Saved in:
Published in: | IEEE access 2023, Vol.11, p.25664-25681 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3 |
container_end_page | 25681 |
container_issue | |
container_start_page | 25664 |
container_title | IEEE access |
container_volume | 11 |
creator | Nie, Mingxing Zou, Liwei Zhu, Tao |
description | Feedrate scheduling is one of the most critical technologies in CNC machining, requiring a reasonable balance between efficiency and quality. This paper proposes a jerk-continuous feedrate smoothing (JCFS) method to generate a low-vibration and smooth feedrate profile for non-uniform rational B-spline (NURBS) interpolation. Firstly, the segmentation concept is introduced to subdivide the entire trajectory into segments to accommodate curvature changes of the NURBS curve, accelerating the acceleration/deceleration process. Secondly, a length threshold-based curve segment classification method is proposed to overcome the complexity of the traditional acceleration and deceleration algorithms. The curve segments are divided into long, medium, and short types, and the length threshold calculation model is derived. Next, to avoid computational complexity for engineering applications, a model is established for the first time to calculate the actual maximum feedrate for different types of segments. Finally, the horizontal-8-shaped and butterfly-shaped NURBS curves are simulated and analyzed. The simulation results indicate that the machining quality is steadily improved while several key indicators remain within the given tolerances. Compared with the traditional method, the proposed method reduces the computational and interpolation time by 17.2% and 22.8%, respectively, demonstrating the feasibility and effectiveness of the method. |
doi_str_mv | 10.1109/ACCESS.2023.3248081 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3248081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10050517</ieee_id><doaj_id>oai_doaj_org_article_5d133ceb462a4ab199149f62ca58a72c</doaj_id><sourcerecordid>2789464802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRSMEElXhC2ARiXWKn3G8LKGFIh4SpWvLjqeQ0sbFcRbw9bikQvXG1vjeOzMnSS4wGmGM5PW4LCfz-YggQkeUsAIV-CgZEJzLjHKaHx-8T5Pztl2heIpY4mKQ3D6A_8xK14S66VzXplMA63WA9GUb6k39o0PtmvQJwoez6dL59HnxejNPZ00Av3Xrv--z5GSp1y2c7-9hsphO3sr77PHlblaOH7OKIRkyKQFxVAmkbW5shQsrDWfcMAGyEBYQQUYaK6IsN5pZBIwxsBwZhkRBLB0msz7XOr1SW19vtP9WTtfqr-D8u9I-1NUaFLeY0goMy4lm2mApMZPLnFSaF1qQKmZd9Vlb7746aINauc43cXxFRCFZHkGSqKK9qvKubT0s_7tipHb0VU9f7eirPf3ouuxdNQAcOOL2HAv6C9X-f7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789464802</pqid></control><display><type>article</type><title>Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation</title><source>IEEE Xplore Open Access Journals</source><creator>Nie, Mingxing ; Zou, Liwei ; Zhu, Tao</creator><creatorcontrib>Nie, Mingxing ; Zou, Liwei ; Zhu, Tao</creatorcontrib><description>Feedrate scheduling is one of the most critical technologies in CNC machining, requiring a reasonable balance between efficiency and quality. This paper proposes a jerk-continuous feedrate smoothing (JCFS) method to generate a low-vibration and smooth feedrate profile for non-uniform rational B-spline (NURBS) interpolation. Firstly, the segmentation concept is introduced to subdivide the entire trajectory into segments to accommodate curvature changes of the NURBS curve, accelerating the acceleration/deceleration process. Secondly, a length threshold-based curve segment classification method is proposed to overcome the complexity of the traditional acceleration and deceleration algorithms. The curve segments are divided into long, medium, and short types, and the length threshold calculation model is derived. Next, to avoid computational complexity for engineering applications, a model is established for the first time to calculate the actual maximum feedrate for different types of segments. Finally, the horizontal-8-shaped and butterfly-shaped NURBS curves are simulated and analyzed. The simulation results indicate that the machining quality is steadily improved while several key indicators remain within the given tolerances. Compared with the traditional method, the proposed method reduces the computational and interpolation time by 17.2% and 22.8%, respectively, demonstrating the feasibility and effectiveness of the method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3248081</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Algorithms ; B spline functions ; Complexity ; Deceleration ; Feedrate scheduling ; Interpolation ; jerk-continuous ; Machining ; NURBS interpolation ; Optimization ; segmentation ; Segments ; Smoothing methods ; Splines (mathematics) ; Surface reconstruction ; Surface topography ; Tolerances ; Trajectory</subject><ispartof>IEEE access, 2023, Vol.11, p.25664-25681</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3</citedby><cites>FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3</cites><orcidid>0000-0002-2720-0470 ; 0000-0002-5879-5980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10050517$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Nie, Mingxing</creatorcontrib><creatorcontrib>Zou, Liwei</creatorcontrib><creatorcontrib>Zhu, Tao</creatorcontrib><title>Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Feedrate scheduling is one of the most critical technologies in CNC machining, requiring a reasonable balance between efficiency and quality. This paper proposes a jerk-continuous feedrate smoothing (JCFS) method to generate a low-vibration and smooth feedrate profile for non-uniform rational B-spline (NURBS) interpolation. Firstly, the segmentation concept is introduced to subdivide the entire trajectory into segments to accommodate curvature changes of the NURBS curve, accelerating the acceleration/deceleration process. Secondly, a length threshold-based curve segment classification method is proposed to overcome the complexity of the traditional acceleration and deceleration algorithms. The curve segments are divided into long, medium, and short types, and the length threshold calculation model is derived. Next, to avoid computational complexity for engineering applications, a model is established for the first time to calculate the actual maximum feedrate for different types of segments. Finally, the horizontal-8-shaped and butterfly-shaped NURBS curves are simulated and analyzed. The simulation results indicate that the machining quality is steadily improved while several key indicators remain within the given tolerances. Compared with the traditional method, the proposed method reduces the computational and interpolation time by 17.2% and 22.8%, respectively, demonstrating the feasibility and effectiveness of the method.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>B spline functions</subject><subject>Complexity</subject><subject>Deceleration</subject><subject>Feedrate scheduling</subject><subject>Interpolation</subject><subject>jerk-continuous</subject><subject>Machining</subject><subject>NURBS interpolation</subject><subject>Optimization</subject><subject>segmentation</subject><subject>Segments</subject><subject>Smoothing methods</subject><subject>Splines (mathematics)</subject><subject>Surface reconstruction</subject><subject>Surface topography</subject><subject>Tolerances</subject><subject>Trajectory</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMtOwzAQRSMEElXhC2ARiXWKn3G8LKGFIh4SpWvLjqeQ0sbFcRbw9bikQvXG1vjeOzMnSS4wGmGM5PW4LCfz-YggQkeUsAIV-CgZEJzLjHKaHx-8T5Pztl2heIpY4mKQ3D6A_8xK14S66VzXplMA63WA9GUb6k39o0PtmvQJwoez6dL59HnxejNPZ00Av3Xrv--z5GSp1y2c7-9hsphO3sr77PHlblaOH7OKIRkyKQFxVAmkbW5shQsrDWfcMAGyEBYQQUYaK6IsN5pZBIwxsBwZhkRBLB0msz7XOr1SW19vtP9WTtfqr-D8u9I-1NUaFLeY0goMy4lm2mApMZPLnFSaF1qQKmZd9Vlb7746aINauc43cXxFRCFZHkGSqKK9qvKubT0s_7tipHb0VU9f7eirPf3ouuxdNQAcOOL2HAv6C9X-f7A</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Nie, Mingxing</creator><creator>Zou, Liwei</creator><creator>Zhu, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2720-0470</orcidid><orcidid>https://orcid.org/0000-0002-5879-5980</orcidid></search><sort><creationdate>2023</creationdate><title>Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation</title><author>Nie, Mingxing ; Zou, Liwei ; Zhu, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>B spline functions</topic><topic>Complexity</topic><topic>Deceleration</topic><topic>Feedrate scheduling</topic><topic>Interpolation</topic><topic>jerk-continuous</topic><topic>Machining</topic><topic>NURBS interpolation</topic><topic>Optimization</topic><topic>segmentation</topic><topic>Segments</topic><topic>Smoothing methods</topic><topic>Splines (mathematics)</topic><topic>Surface reconstruction</topic><topic>Surface topography</topic><topic>Tolerances</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Mingxing</creatorcontrib><creatorcontrib>Zou, Liwei</creatorcontrib><creatorcontrib>Zhu, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Mingxing</au><au>Zou, Liwei</au><au>Zhu, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>25664</spage><epage>25681</epage><pages>25664-25681</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Feedrate scheduling is one of the most critical technologies in CNC machining, requiring a reasonable balance between efficiency and quality. This paper proposes a jerk-continuous feedrate smoothing (JCFS) method to generate a low-vibration and smooth feedrate profile for non-uniform rational B-spline (NURBS) interpolation. Firstly, the segmentation concept is introduced to subdivide the entire trajectory into segments to accommodate curvature changes of the NURBS curve, accelerating the acceleration/deceleration process. Secondly, a length threshold-based curve segment classification method is proposed to overcome the complexity of the traditional acceleration and deceleration algorithms. The curve segments are divided into long, medium, and short types, and the length threshold calculation model is derived. Next, to avoid computational complexity for engineering applications, a model is established for the first time to calculate the actual maximum feedrate for different types of segments. Finally, the horizontal-8-shaped and butterfly-shaped NURBS curves are simulated and analyzed. The simulation results indicate that the machining quality is steadily improved while several key indicators remain within the given tolerances. Compared with the traditional method, the proposed method reduces the computational and interpolation time by 17.2% and 22.8%, respectively, demonstrating the feasibility and effectiveness of the method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3248081</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2720-0470</orcidid><orcidid>https://orcid.org/0000-0002-5879-5980</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.25664-25681 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3248081 |
source | IEEE Xplore Open Access Journals |
subjects | Acceleration Algorithms B spline functions Complexity Deceleration Feedrate scheduling Interpolation jerk-continuous Machining NURBS interpolation Optimization segmentation Segments Smoothing methods Splines (mathematics) Surface reconstruction Surface topography Tolerances Trajectory |
title | Jerk-Continuous Feedrate Optimization Method for NURBS Interpolation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jerk-Continuous%20Feedrate%20Optimization%20Method%20for%20NURBS%20Interpolation&rft.jtitle=IEEE%20access&rft.au=Nie,%20Mingxing&rft.date=2023&rft.volume=11&rft.spage=25664&rft.epage=25681&rft.pages=25664-25681&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3248081&rft_dat=%3Cproquest_cross%3E2789464802%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-99e050c70ad6bdc18d9b545b47e987de020b9bd79e06ba4d0e444ed50b40782d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2789464802&rft_id=info:pmid/&rft_ieee_id=10050517&rfr_iscdi=true |