Loading…
A Comprehensive Review of Deep Learning-Based Real-World Image Restoration
Real-world imagery does not always exhibit good visibility and clean content, but often suffers from various kinds of degradations (e.g., noise, blur, rain drops, fog, color distortion, etc.), which severely affect vision-driven tasks (e.g., image classification, target recognition, and tracking, et...
Saved in:
Published in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Zhai, Lujun Wang, Yonghui Cui, Suxia Zhou, Yu |
description | Real-world imagery does not always exhibit good visibility and clean content, but often suffers from various kinds of degradations (e.g., noise, blur, rain drops, fog, color distortion, etc.), which severely affect vision-driven tasks (e.g., image classification, target recognition, and tracking, etc.). Thus, restoring the true scene from such degraded images is of significance. In recent years, a large body of deep learning-based image processing works has been exploited due to the advances in deep neural networks. This paper aims to make a comprehensive review of real-world image restoration algorithms and beyond. More specifically, this review provides overviews of critical benchmark datasets, image quality assessment methods, and four major categories of deep learning-based image restoration methods, i.e., based on convolutional neural network (CNN), generative adversarial network (GAN), Transformer, and multi-layer perceptron (MLP). The paper highlights the latest developments and advances in each category of network architecture to provide an up-to-date overview. Moreover, the representative state-of-the-art image restoration methods are compared visually and numerically. Finally, for real-world image restoration, the current situations are objectively assessed, challenges are discussed, and future directions and trends are presented. |
doi_str_mv | 10.1109/ACCESS.2023.3250616 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3250616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10056934</ieee_id><doaj_id>oai_doaj_org_article_15ef1d765ac24bc7846f84d42dd546a2</doaj_id><sourcerecordid>2784552955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgqf0Fegh4Tt3vZI81Vq0UBKt4XCbZSU1Js3XTVvz3bo1I5zLDzHtvZnhRdEnJmFKibyZ5Pl0sxowwPuZMEkXVSTRgVOmES65Oj-rzaNR1KxIiCy2ZDqKnSZy79cbjB7Zdvcf4Bfc1fsWuiu8QN_Ecwbd1u0xuoUMbptAk7843Np6tYXmAd1vnYVu79iI6q6DpcPSXh9Hb_fQ1f0zmzw-zfDJPSkH0NtEFK7QVimSWKiFsITRAqiuEqqykolRIYS2mAjCjZaGIFIJrCSJwWIHIh9Gs17UOVmbj6zX4b-OgNr8N55cG_LYuGzRUYkVtqiSUTBRlmglVZUGIWSuFAha0rnutjXefu_CLWbmdb8P5hgW0lExLGVC8R5XedZ3H6n8rJebggek9MAcPzJ8HgXXVs2pEPGIQqTQX_Adw_YFb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784552955</pqid></control><display><type>article</type><title>A Comprehensive Review of Deep Learning-Based Real-World Image Restoration</title><source>IEEE Xplore Open Access Journals</source><creator>Zhai, Lujun ; Wang, Yonghui ; Cui, Suxia ; Zhou, Yu</creator><creatorcontrib>Zhai, Lujun ; Wang, Yonghui ; Cui, Suxia ; Zhou, Yu</creatorcontrib><description>Real-world imagery does not always exhibit good visibility and clean content, but often suffers from various kinds of degradations (e.g., noise, blur, rain drops, fog, color distortion, etc.), which severely affect vision-driven tasks (e.g., image classification, target recognition, and tracking, etc.). Thus, restoring the true scene from such degraded images is of significance. In recent years, a large body of deep learning-based image processing works has been exploited due to the advances in deep neural networks. This paper aims to make a comprehensive review of real-world image restoration algorithms and beyond. More specifically, this review provides overviews of critical benchmark datasets, image quality assessment methods, and four major categories of deep learning-based image restoration methods, i.e., based on convolutional neural network (CNN), generative adversarial network (GAN), Transformer, and multi-layer perceptron (MLP). The paper highlights the latest developments and advances in each category of network architecture to provide an up-to-date overview. Moreover, the representative state-of-the-art image restoration methods are compared visually and numerically. Finally, for real-world image restoration, the current situations are objectively assessed, challenges are discussed, and future directions and trends are presented.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3250616</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; benchmark datasets ; Benchmark testing ; Computer architecture ; deblurring ; Deep learning ; Degradation ; dehazing ; denoising ; deraining ; Generative adversarial networks ; Image classification ; Image color analysis ; Image processing ; Image quality ; image quality assessment ; Image restoration ; Machine learning ; Multilayer perceptrons ; Multilayers ; Neural networks ; Quality assessment ; Raindrops ; review ; super-resolution ; Target recognition ; Task analysis ; Tracking</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3</citedby><cites>FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3</cites><orcidid>0000-0003-1152-3272 ; 0000-0001-9784-141X ; 0000-0003-4334-0921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10056934$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhai, Lujun</creatorcontrib><creatorcontrib>Wang, Yonghui</creatorcontrib><creatorcontrib>Cui, Suxia</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><title>A Comprehensive Review of Deep Learning-Based Real-World Image Restoration</title><title>IEEE access</title><addtitle>Access</addtitle><description>Real-world imagery does not always exhibit good visibility and clean content, but often suffers from various kinds of degradations (e.g., noise, blur, rain drops, fog, color distortion, etc.), which severely affect vision-driven tasks (e.g., image classification, target recognition, and tracking, etc.). Thus, restoring the true scene from such degraded images is of significance. In recent years, a large body of deep learning-based image processing works has been exploited due to the advances in deep neural networks. This paper aims to make a comprehensive review of real-world image restoration algorithms and beyond. More specifically, this review provides overviews of critical benchmark datasets, image quality assessment methods, and four major categories of deep learning-based image restoration methods, i.e., based on convolutional neural network (CNN), generative adversarial network (GAN), Transformer, and multi-layer perceptron (MLP). The paper highlights the latest developments and advances in each category of network architecture to provide an up-to-date overview. Moreover, the representative state-of-the-art image restoration methods are compared visually and numerically. Finally, for real-world image restoration, the current situations are objectively assessed, challenges are discussed, and future directions and trends are presented.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>benchmark datasets</subject><subject>Benchmark testing</subject><subject>Computer architecture</subject><subject>deblurring</subject><subject>Deep learning</subject><subject>Degradation</subject><subject>dehazing</subject><subject>denoising</subject><subject>deraining</subject><subject>Generative adversarial networks</subject><subject>Image classification</subject><subject>Image color analysis</subject><subject>Image processing</subject><subject>Image quality</subject><subject>image quality assessment</subject><subject>Image restoration</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Quality assessment</subject><subject>Raindrops</subject><subject>review</subject><subject>super-resolution</subject><subject>Target recognition</subject><subject>Task analysis</subject><subject>Tracking</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgqf0Fegh4Tt3vZI81Vq0UBKt4XCbZSU1Js3XTVvz3bo1I5zLDzHtvZnhRdEnJmFKibyZ5Pl0sxowwPuZMEkXVSTRgVOmES65Oj-rzaNR1KxIiCy2ZDqKnSZy79cbjB7Zdvcf4Bfc1fsWuiu8QN_Ecwbd1u0xuoUMbptAk7843Np6tYXmAd1vnYVu79iI6q6DpcPSXh9Hb_fQ1f0zmzw-zfDJPSkH0NtEFK7QVimSWKiFsITRAqiuEqqykolRIYS2mAjCjZaGIFIJrCSJwWIHIh9Gs17UOVmbj6zX4b-OgNr8N55cG_LYuGzRUYkVtqiSUTBRlmglVZUGIWSuFAha0rnutjXefu_CLWbmdb8P5hgW0lExLGVC8R5XedZ3H6n8rJebggek9MAcPzJ8HgXXVs2pEPGIQqTQX_Adw_YFb</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhai, Lujun</creator><creator>Wang, Yonghui</creator><creator>Cui, Suxia</creator><creator>Zhou, Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1152-3272</orcidid><orcidid>https://orcid.org/0000-0001-9784-141X</orcidid><orcidid>https://orcid.org/0000-0003-4334-0921</orcidid></search><sort><creationdate>20230101</creationdate><title>A Comprehensive Review of Deep Learning-Based Real-World Image Restoration</title><author>Zhai, Lujun ; Wang, Yonghui ; Cui, Suxia ; Zhou, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>benchmark datasets</topic><topic>Benchmark testing</topic><topic>Computer architecture</topic><topic>deblurring</topic><topic>Deep learning</topic><topic>Degradation</topic><topic>dehazing</topic><topic>denoising</topic><topic>deraining</topic><topic>Generative adversarial networks</topic><topic>Image classification</topic><topic>Image color analysis</topic><topic>Image processing</topic><topic>Image quality</topic><topic>image quality assessment</topic><topic>Image restoration</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Quality assessment</topic><topic>Raindrops</topic><topic>review</topic><topic>super-resolution</topic><topic>Target recognition</topic><topic>Task analysis</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Lujun</creatorcontrib><creatorcontrib>Wang, Yonghui</creatorcontrib><creatorcontrib>Cui, Suxia</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Lujun</au><au>Wang, Yonghui</au><au>Cui, Suxia</au><au>Zhou, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Review of Deep Learning-Based Real-World Image Restoration</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Real-world imagery does not always exhibit good visibility and clean content, but often suffers from various kinds of degradations (e.g., noise, blur, rain drops, fog, color distortion, etc.), which severely affect vision-driven tasks (e.g., image classification, target recognition, and tracking, etc.). Thus, restoring the true scene from such degraded images is of significance. In recent years, a large body of deep learning-based image processing works has been exploited due to the advances in deep neural networks. This paper aims to make a comprehensive review of real-world image restoration algorithms and beyond. More specifically, this review provides overviews of critical benchmark datasets, image quality assessment methods, and four major categories of deep learning-based image restoration methods, i.e., based on convolutional neural network (CNN), generative adversarial network (GAN), Transformer, and multi-layer perceptron (MLP). The paper highlights the latest developments and advances in each category of network architecture to provide an up-to-date overview. Moreover, the representative state-of-the-art image restoration methods are compared visually and numerically. Finally, for real-world image restoration, the current situations are objectively assessed, challenges are discussed, and future directions and trends are presented.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3250616</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1152-3272</orcidid><orcidid>https://orcid.org/0000-0001-9784-141X</orcidid><orcidid>https://orcid.org/0000-0003-4334-0921</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2023_3250616 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Artificial neural networks benchmark datasets Benchmark testing Computer architecture deblurring Deep learning Degradation dehazing denoising deraining Generative adversarial networks Image classification Image color analysis Image processing Image quality image quality assessment Image restoration Machine learning Multilayer perceptrons Multilayers Neural networks Quality assessment Raindrops review super-resolution Target recognition Task analysis Tracking |
title | A Comprehensive Review of Deep Learning-Based Real-World Image Restoration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Review%20of%20Deep%20Learning-Based%20Real-World%20Image%20Restoration&rft.jtitle=IEEE%20access&rft.au=Zhai,%20Lujun&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3250616&rft_dat=%3Cproquest_cross%3E2784552955%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2784552955&rft_id=info:pmid/&rft_ieee_id=10056934&rfr_iscdi=true |