Loading…

A Comprehensive Review of Deep Learning-Based Real-World Image Restoration

Real-world imagery does not always exhibit good visibility and clean content, but often suffers from various kinds of degradations (e.g., noise, blur, rain drops, fog, color distortion, etc.), which severely affect vision-driven tasks (e.g., image classification, target recognition, and tracking, et...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023-01, Vol.11, p.1-1
Main Authors: Zhai, Lujun, Wang, Yonghui, Cui, Suxia, Zhou, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3
cites cdi_FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Zhai, Lujun
Wang, Yonghui
Cui, Suxia
Zhou, Yu
description Real-world imagery does not always exhibit good visibility and clean content, but often suffers from various kinds of degradations (e.g., noise, blur, rain drops, fog, color distortion, etc.), which severely affect vision-driven tasks (e.g., image classification, target recognition, and tracking, etc.). Thus, restoring the true scene from such degraded images is of significance. In recent years, a large body of deep learning-based image processing works has been exploited due to the advances in deep neural networks. This paper aims to make a comprehensive review of real-world image restoration algorithms and beyond. More specifically, this review provides overviews of critical benchmark datasets, image quality assessment methods, and four major categories of deep learning-based image restoration methods, i.e., based on convolutional neural network (CNN), generative adversarial network (GAN), Transformer, and multi-layer perceptron (MLP). The paper highlights the latest developments and advances in each category of network architecture to provide an up-to-date overview. Moreover, the representative state-of-the-art image restoration methods are compared visually and numerically. Finally, for real-world image restoration, the current situations are objectively assessed, challenges are discussed, and future directions and trends are presented.
doi_str_mv 10.1109/ACCESS.2023.3250616
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3250616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10056934</ieee_id><doaj_id>oai_doaj_org_article_15ef1d765ac24bc7846f84d42dd546a2</doaj_id><sourcerecordid>2784552955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgqf0Fegh4Tt3vZI81Vq0UBKt4XCbZSU1Js3XTVvz3bo1I5zLDzHtvZnhRdEnJmFKibyZ5Pl0sxowwPuZMEkXVSTRgVOmES65Oj-rzaNR1KxIiCy2ZDqKnSZy79cbjB7Zdvcf4Bfc1fsWuiu8QN_Ecwbd1u0xuoUMbptAk7843Np6tYXmAd1vnYVu79iI6q6DpcPSXh9Hb_fQ1f0zmzw-zfDJPSkH0NtEFK7QVimSWKiFsITRAqiuEqqykolRIYS2mAjCjZaGIFIJrCSJwWIHIh9Gs17UOVmbj6zX4b-OgNr8N55cG_LYuGzRUYkVtqiSUTBRlmglVZUGIWSuFAha0rnutjXefu_CLWbmdb8P5hgW0lExLGVC8R5XedZ3H6n8rJebggek9MAcPzJ8HgXXVs2pEPGIQqTQX_Adw_YFb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784552955</pqid></control><display><type>article</type><title>A Comprehensive Review of Deep Learning-Based Real-World Image Restoration</title><source>IEEE Xplore Open Access Journals</source><creator>Zhai, Lujun ; Wang, Yonghui ; Cui, Suxia ; Zhou, Yu</creator><creatorcontrib>Zhai, Lujun ; Wang, Yonghui ; Cui, Suxia ; Zhou, Yu</creatorcontrib><description>Real-world imagery does not always exhibit good visibility and clean content, but often suffers from various kinds of degradations (e.g., noise, blur, rain drops, fog, color distortion, etc.), which severely affect vision-driven tasks (e.g., image classification, target recognition, and tracking, etc.). Thus, restoring the true scene from such degraded images is of significance. In recent years, a large body of deep learning-based image processing works has been exploited due to the advances in deep neural networks. This paper aims to make a comprehensive review of real-world image restoration algorithms and beyond. More specifically, this review provides overviews of critical benchmark datasets, image quality assessment methods, and four major categories of deep learning-based image restoration methods, i.e., based on convolutional neural network (CNN), generative adversarial network (GAN), Transformer, and multi-layer perceptron (MLP). The paper highlights the latest developments and advances in each category of network architecture to provide an up-to-date overview. Moreover, the representative state-of-the-art image restoration methods are compared visually and numerically. Finally, for real-world image restoration, the current situations are objectively assessed, challenges are discussed, and future directions and trends are presented.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3250616</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; benchmark datasets ; Benchmark testing ; Computer architecture ; deblurring ; Deep learning ; Degradation ; dehazing ; denoising ; deraining ; Generative adversarial networks ; Image classification ; Image color analysis ; Image processing ; Image quality ; image quality assessment ; Image restoration ; Machine learning ; Multilayer perceptrons ; Multilayers ; Neural networks ; Quality assessment ; Raindrops ; review ; super-resolution ; Target recognition ; Task analysis ; Tracking</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3</citedby><cites>FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3</cites><orcidid>0000-0003-1152-3272 ; 0000-0001-9784-141X ; 0000-0003-4334-0921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10056934$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhai, Lujun</creatorcontrib><creatorcontrib>Wang, Yonghui</creatorcontrib><creatorcontrib>Cui, Suxia</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><title>A Comprehensive Review of Deep Learning-Based Real-World Image Restoration</title><title>IEEE access</title><addtitle>Access</addtitle><description>Real-world imagery does not always exhibit good visibility and clean content, but often suffers from various kinds of degradations (e.g., noise, blur, rain drops, fog, color distortion, etc.), which severely affect vision-driven tasks (e.g., image classification, target recognition, and tracking, etc.). Thus, restoring the true scene from such degraded images is of significance. In recent years, a large body of deep learning-based image processing works has been exploited due to the advances in deep neural networks. This paper aims to make a comprehensive review of real-world image restoration algorithms and beyond. More specifically, this review provides overviews of critical benchmark datasets, image quality assessment methods, and four major categories of deep learning-based image restoration methods, i.e., based on convolutional neural network (CNN), generative adversarial network (GAN), Transformer, and multi-layer perceptron (MLP). The paper highlights the latest developments and advances in each category of network architecture to provide an up-to-date overview. Moreover, the representative state-of-the-art image restoration methods are compared visually and numerically. Finally, for real-world image restoration, the current situations are objectively assessed, challenges are discussed, and future directions and trends are presented.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>benchmark datasets</subject><subject>Benchmark testing</subject><subject>Computer architecture</subject><subject>deblurring</subject><subject>Deep learning</subject><subject>Degradation</subject><subject>dehazing</subject><subject>denoising</subject><subject>deraining</subject><subject>Generative adversarial networks</subject><subject>Image classification</subject><subject>Image color analysis</subject><subject>Image processing</subject><subject>Image quality</subject><subject>image quality assessment</subject><subject>Image restoration</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Quality assessment</subject><subject>Raindrops</subject><subject>review</subject><subject>super-resolution</subject><subject>Target recognition</subject><subject>Task analysis</subject><subject>Tracking</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgqf0Fegh4Tt3vZI81Vq0UBKt4XCbZSU1Js3XTVvz3bo1I5zLDzHtvZnhRdEnJmFKibyZ5Pl0sxowwPuZMEkXVSTRgVOmES65Oj-rzaNR1KxIiCy2ZDqKnSZy79cbjB7Zdvcf4Bfc1fsWuiu8QN_Ecwbd1u0xuoUMbptAk7843Np6tYXmAd1vnYVu79iI6q6DpcPSXh9Hb_fQ1f0zmzw-zfDJPSkH0NtEFK7QVimSWKiFsITRAqiuEqqykolRIYS2mAjCjZaGIFIJrCSJwWIHIh9Gs17UOVmbj6zX4b-OgNr8N55cG_LYuGzRUYkVtqiSUTBRlmglVZUGIWSuFAha0rnutjXefu_CLWbmdb8P5hgW0lExLGVC8R5XedZ3H6n8rJebggek9MAcPzJ8HgXXVs2pEPGIQqTQX_Adw_YFb</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhai, Lujun</creator><creator>Wang, Yonghui</creator><creator>Cui, Suxia</creator><creator>Zhou, Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1152-3272</orcidid><orcidid>https://orcid.org/0000-0001-9784-141X</orcidid><orcidid>https://orcid.org/0000-0003-4334-0921</orcidid></search><sort><creationdate>20230101</creationdate><title>A Comprehensive Review of Deep Learning-Based Real-World Image Restoration</title><author>Zhai, Lujun ; Wang, Yonghui ; Cui, Suxia ; Zhou, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>benchmark datasets</topic><topic>Benchmark testing</topic><topic>Computer architecture</topic><topic>deblurring</topic><topic>Deep learning</topic><topic>Degradation</topic><topic>dehazing</topic><topic>denoising</topic><topic>deraining</topic><topic>Generative adversarial networks</topic><topic>Image classification</topic><topic>Image color analysis</topic><topic>Image processing</topic><topic>Image quality</topic><topic>image quality assessment</topic><topic>Image restoration</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Quality assessment</topic><topic>Raindrops</topic><topic>review</topic><topic>super-resolution</topic><topic>Target recognition</topic><topic>Task analysis</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Lujun</creatorcontrib><creatorcontrib>Wang, Yonghui</creatorcontrib><creatorcontrib>Cui, Suxia</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Lujun</au><au>Wang, Yonghui</au><au>Cui, Suxia</au><au>Zhou, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Review of Deep Learning-Based Real-World Image Restoration</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Real-world imagery does not always exhibit good visibility and clean content, but often suffers from various kinds of degradations (e.g., noise, blur, rain drops, fog, color distortion, etc.), which severely affect vision-driven tasks (e.g., image classification, target recognition, and tracking, etc.). Thus, restoring the true scene from such degraded images is of significance. In recent years, a large body of deep learning-based image processing works has been exploited due to the advances in deep neural networks. This paper aims to make a comprehensive review of real-world image restoration algorithms and beyond. More specifically, this review provides overviews of critical benchmark datasets, image quality assessment methods, and four major categories of deep learning-based image restoration methods, i.e., based on convolutional neural network (CNN), generative adversarial network (GAN), Transformer, and multi-layer perceptron (MLP). The paper highlights the latest developments and advances in each category of network architecture to provide an up-to-date overview. Moreover, the representative state-of-the-art image restoration methods are compared visually and numerically. Finally, for real-world image restoration, the current situations are objectively assessed, challenges are discussed, and future directions and trends are presented.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3250616</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1152-3272</orcidid><orcidid>https://orcid.org/0000-0001-9784-141X</orcidid><orcidid>https://orcid.org/0000-0003-4334-0921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3250616
source IEEE Xplore Open Access Journals
subjects Algorithms
Artificial neural networks
benchmark datasets
Benchmark testing
Computer architecture
deblurring
Deep learning
Degradation
dehazing
denoising
deraining
Generative adversarial networks
Image classification
Image color analysis
Image processing
Image quality
image quality assessment
Image restoration
Machine learning
Multilayer perceptrons
Multilayers
Neural networks
Quality assessment
Raindrops
review
super-resolution
Target recognition
Task analysis
Tracking
title A Comprehensive Review of Deep Learning-Based Real-World Image Restoration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Review%20of%20Deep%20Learning-Based%20Real-World%20Image%20Restoration&rft.jtitle=IEEE%20access&rft.au=Zhai,%20Lujun&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3250616&rft_dat=%3Cproquest_cross%3E2784552955%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-9b2b9d4608d1644db49aa79feafcf5611454dde74ae81cb60544395a4d462bee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2784552955&rft_id=info:pmid/&rft_ieee_id=10056934&rfr_iscdi=true