Loading…

Multi-agent deep-learning based comparative analysis of team sport trajectories

Computational analysis of multi-agent trajectories is a fundamental issue in the study of real-world biological agents. For trajectory analysis, combining movement data with labels (e.g., whether a team scores in a ball game) can provide additional insights compared to relying only on trajectory dat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023-01, Vol.11, p.1-1
Main Authors: Ziyi, Zhang, Bunker, Rory, Takeda, Kazuya, Fujii, Keisuke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c459t-6e9e3fc3227d13ed41f840113a01f576e62e6394c256abd908bf5b004b960c0a3
cites cdi_FETCH-LOGICAL-c459t-6e9e3fc3227d13ed41f840113a01f576e62e6394c256abd908bf5b004b960c0a3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Ziyi, Zhang
Bunker, Rory
Takeda, Kazuya
Fujii, Keisuke
description Computational analysis of multi-agent trajectories is a fundamental issue in the study of real-world biological agents. For trajectory analysis, combining movement data with labels (e.g., whether a team scores in a ball game) can provide additional insights compared to relying only on trajectory data. However, existing deep-learning-based methods consider only single-agent animal trajectories, and cannot be directly applied to multi-agent trajectories in sports. In this paper, a comparative analysis method to analyze multi-agent trajectories in ball games is proposed. A neural network approach using multi-agent motion characteristics (e.g., the distances between agents and objects) as the input is adopted, which is based on an attention mechanism designed to automatically detect segments in trajectories that are characteristic of a given class. This enables us to understand differences between classes by highlighting segmented trajectories and which variables correlate with the given labels. The effectiveness of our approach was verified by comparing various baselines with effective/ineffective attack labels and goal/non-goal labels using different sizes of the dataset. The effectiveness of our method is also demonstrated through a use case that analyzes the attacking plays in an NBA dataset.
doi_str_mv 10.1109/ACCESS.2023.3269287
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3269287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10106251</ieee_id><doaj_id>oai_doaj_org_article_fabfd771d0874734b53cade4f7ce2966</doaj_id><sourcerecordid>2811728010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-6e9e3fc3227d13ed41f840113a01f576e62e6394c256abd908bf5b004b960c0a3</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxRdRUNRPoIcFz1vzZzfZHKVULSg9VM9hNpmUlG2zJqngt3d1iziXGR7z3jD8iuKGkhmlRN0_zOeL9XrGCOMzzoRirTwpLhgVquINF6f_5vPiOqUtGasdpUZeFKvXQ599BRvc59IiDlWPEPd-vyk7SGhLE3YDRMj-E0vYQ_-VfCqDKzPCrkxDiLnMEbZocoge01Vx5qBPeH3sl8X74-Jt_ly9rJ6W84eXytSNypVAhdwZzpi0lKOtqWtrQikHQl0jBQqGgqvasEZAZxVpO9d0hNSdEsQQ4JfFcsq1AbZ6iH4H8UsH8PpXCHGjIWZvetQOOmelpJa0spa87hpuwGLtpEGmhBiz7qasIYaPA6ast-EQx1-TZi2lkrWEknGLT1smhpQiur-rlOgfEHoCoX9A6COI0XU7uTwi_nNQIlhD-Tf8PYRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811728010</pqid></control><display><type>article</type><title>Multi-agent deep-learning based comparative analysis of team sport trajectories</title><source>IEEE Open Access Journals</source><creator>Ziyi, Zhang ; Bunker, Rory ; Takeda, Kazuya ; Fujii, Keisuke</creator><creatorcontrib>Ziyi, Zhang ; Bunker, Rory ; Takeda, Kazuya ; Fujii, Keisuke</creatorcontrib><description>Computational analysis of multi-agent trajectories is a fundamental issue in the study of real-world biological agents. For trajectory analysis, combining movement data with labels (e.g., whether a team scores in a ball game) can provide additional insights compared to relying only on trajectory data. However, existing deep-learning-based methods consider only single-agent animal trajectories, and cannot be directly applied to multi-agent trajectories in sports. In this paper, a comparative analysis method to analyze multi-agent trajectories in ball games is proposed. A neural network approach using multi-agent motion characteristics (e.g., the distances between agents and objects) as the input is adopted, which is based on an attention mechanism designed to automatically detect segments in trajectories that are characteristic of a given class. This enables us to understand differences between classes by highlighting segmented trajectories and which variables correlate with the given labels. The effectiveness of our approach was verified by comparing various baselines with effective/ineffective attack labels and goal/non-goal labels using different sizes of the dataset. The effectiveness of our method is also demonstrated through a use case that analyzes the attacking plays in an NBA dataset.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3269287</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Behavioral sciences ; Comparative analysis ; Datasets ; Deep learning ; Effectiveness ; Feature extraction ; Games ; Interpretability ; Labels ; Machine learning ; Mathematical models ; Multi-agent systems ; Multiagent systems ; Neural networks ; Sports ; Trajectory ; Trajectory Analysis ; Unsupervised learning</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-6e9e3fc3227d13ed41f840113a01f576e62e6394c256abd908bf5b004b960c0a3</citedby><cites>FETCH-LOGICAL-c459t-6e9e3fc3227d13ed41f840113a01f576e62e6394c256abd908bf5b004b960c0a3</cites><orcidid>0000-0002-0330-1787 ; 0000-0001-5487-4297 ; 0000-0001-9243-7063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10106251$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ziyi, Zhang</creatorcontrib><creatorcontrib>Bunker, Rory</creatorcontrib><creatorcontrib>Takeda, Kazuya</creatorcontrib><creatorcontrib>Fujii, Keisuke</creatorcontrib><title>Multi-agent deep-learning based comparative analysis of team sport trajectories</title><title>IEEE access</title><addtitle>Access</addtitle><description>Computational analysis of multi-agent trajectories is a fundamental issue in the study of real-world biological agents. For trajectory analysis, combining movement data with labels (e.g., whether a team scores in a ball game) can provide additional insights compared to relying only on trajectory data. However, existing deep-learning-based methods consider only single-agent animal trajectories, and cannot be directly applied to multi-agent trajectories in sports. In this paper, a comparative analysis method to analyze multi-agent trajectories in ball games is proposed. A neural network approach using multi-agent motion characteristics (e.g., the distances between agents and objects) as the input is adopted, which is based on an attention mechanism designed to automatically detect segments in trajectories that are characteristic of a given class. This enables us to understand differences between classes by highlighting segmented trajectories and which variables correlate with the given labels. The effectiveness of our approach was verified by comparing various baselines with effective/ineffective attack labels and goal/non-goal labels using different sizes of the dataset. The effectiveness of our method is also demonstrated through a use case that analyzes the attacking plays in an NBA dataset.</description><subject>Behavioral sciences</subject><subject>Comparative analysis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Effectiveness</subject><subject>Feature extraction</subject><subject>Games</subject><subject>Interpretability</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Neural networks</subject><subject>Sports</subject><subject>Trajectory</subject><subject>Trajectory Analysis</subject><subject>Unsupervised learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxRdRUNRPoIcFz1vzZzfZHKVULSg9VM9hNpmUlG2zJqngt3d1iziXGR7z3jD8iuKGkhmlRN0_zOeL9XrGCOMzzoRirTwpLhgVquINF6f_5vPiOqUtGasdpUZeFKvXQ599BRvc59IiDlWPEPd-vyk7SGhLE3YDRMj-E0vYQ_-VfCqDKzPCrkxDiLnMEbZocoge01Vx5qBPeH3sl8X74-Jt_ly9rJ6W84eXytSNypVAhdwZzpi0lKOtqWtrQikHQl0jBQqGgqvasEZAZxVpO9d0hNSdEsQQ4JfFcsq1AbZ6iH4H8UsH8PpXCHGjIWZvetQOOmelpJa0spa87hpuwGLtpEGmhBiz7qasIYaPA6ast-EQx1-TZi2lkrWEknGLT1smhpQiur-rlOgfEHoCoX9A6COI0XU7uTwi_nNQIlhD-Tf8PYRA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ziyi, Zhang</creator><creator>Bunker, Rory</creator><creator>Takeda, Kazuya</creator><creator>Fujii, Keisuke</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0330-1787</orcidid><orcidid>https://orcid.org/0000-0001-5487-4297</orcidid><orcidid>https://orcid.org/0000-0001-9243-7063</orcidid></search><sort><creationdate>20230101</creationdate><title>Multi-agent deep-learning based comparative analysis of team sport trajectories</title><author>Ziyi, Zhang ; Bunker, Rory ; Takeda, Kazuya ; Fujii, Keisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-6e9e3fc3227d13ed41f840113a01f576e62e6394c256abd908bf5b004b960c0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Behavioral sciences</topic><topic>Comparative analysis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Effectiveness</topic><topic>Feature extraction</topic><topic>Games</topic><topic>Interpretability</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Neural networks</topic><topic>Sports</topic><topic>Trajectory</topic><topic>Trajectory Analysis</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziyi, Zhang</creatorcontrib><creatorcontrib>Bunker, Rory</creatorcontrib><creatorcontrib>Takeda, Kazuya</creatorcontrib><creatorcontrib>Fujii, Keisuke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziyi, Zhang</au><au>Bunker, Rory</au><au>Takeda, Kazuya</au><au>Fujii, Keisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-agent deep-learning based comparative analysis of team sport trajectories</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Computational analysis of multi-agent trajectories is a fundamental issue in the study of real-world biological agents. For trajectory analysis, combining movement data with labels (e.g., whether a team scores in a ball game) can provide additional insights compared to relying only on trajectory data. However, existing deep-learning-based methods consider only single-agent animal trajectories, and cannot be directly applied to multi-agent trajectories in sports. In this paper, a comparative analysis method to analyze multi-agent trajectories in ball games is proposed. A neural network approach using multi-agent motion characteristics (e.g., the distances between agents and objects) as the input is adopted, which is based on an attention mechanism designed to automatically detect segments in trajectories that are characteristic of a given class. This enables us to understand differences between classes by highlighting segmented trajectories and which variables correlate with the given labels. The effectiveness of our approach was verified by comparing various baselines with effective/ineffective attack labels and goal/non-goal labels using different sizes of the dataset. The effectiveness of our method is also demonstrated through a use case that analyzes the attacking plays in an NBA dataset.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3269287</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0330-1787</orcidid><orcidid>https://orcid.org/0000-0001-5487-4297</orcidid><orcidid>https://orcid.org/0000-0001-9243-7063</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3269287
source IEEE Open Access Journals
subjects Behavioral sciences
Comparative analysis
Datasets
Deep learning
Effectiveness
Feature extraction
Games
Interpretability
Labels
Machine learning
Mathematical models
Multi-agent systems
Multiagent systems
Neural networks
Sports
Trajectory
Trajectory Analysis
Unsupervised learning
title Multi-agent deep-learning based comparative analysis of team sport trajectories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-agent%20deep-learning%20based%20comparative%20analysis%20of%20team%20sport%20trajectories&rft.jtitle=IEEE%20access&rft.au=Ziyi,%20Zhang&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3269287&rft_dat=%3Cproquest_cross%3E2811728010%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-6e9e3fc3227d13ed41f840113a01f576e62e6394c256abd908bf5b004b960c0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2811728010&rft_id=info:pmid/&rft_ieee_id=10106251&rfr_iscdi=true