Loading…

Fault location of the renewable energy sources connected distribution networks based on time differences of the modal traveling waves

The topology of the distribution network and direction of the power flow will change when distributed generators (DGs) are connected to it, making it difficult to locate faults using conventional techniques like the impedance approach. Aiming at the two-phase short-circuit grounding faults of active...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023-01, Vol.11, p.1-1
Main Authors: Ren, Xiaofeng, Pan, Yihang, Hou, Meng, Liang, Rui, Su, Lingdong, Wang, Quanjin, Zhang, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-6744f915fe0bc3364eaeb37456dd0e34120f4f1ab0f4cc84e5f3a5f4e23a1f63
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Ren, Xiaofeng
Pan, Yihang
Hou, Meng
Liang, Rui
Su, Lingdong
Wang, Quanjin
Zhang, Peng
description The topology of the distribution network and direction of the power flow will change when distributed generators (DGs) are connected to it, making it difficult to locate faults using conventional techniques like the impedance approach. Aiming at the two-phase short-circuit grounding faults of active distribution networks, this paper proposes a fault location method based on the time difference of the traveling wave modulus. The first step is the proposal of a zero-mode time-of-arrival calibration method for the ideal frequency band through the analysis of the attenuation of zero-mode traveling wave transmission. Next, define the relative wave velocity, research the quantitative relationship between the modulus transmission time difference and the zero-mode and aerial-mode wave velocities, and establish equation constraints between the modulus transmission time difference, relative wave velocity, and transmission distance. Then, time bounds and dynamic inequality constraints that establish relative wave velocities by fitting. Finally, combined with the abnormal data processing strategy, with the goal of minimizing the weighted deviation of the modulus time difference, the particle swarm optimization (PSO) algorithm is used to solve the fault distance. The PSCAD simulation result demonstrates that the method proposed in this paper has the advantages of high accuracy, strong error tolerance, and strong adaptability, and can quickly and accurately locate faults.
doi_str_mv 10.1109/ACCESS.2023.3332633
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3332633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10318090</ieee_id><doaj_id>oai_doaj_org_article_5e4f4347ec5441bf819ef1622a68c719</doaj_id><sourcerecordid>2893072825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-6744f915fe0bc3364eaeb37456dd0e34120f4f1ab0f4cc84e5f3a5f4e23a1f63</originalsourceid><addsrcrecordid>eNpNUc1ONCEQnBhNNOoT6IHkO-8KNDAzR7PxLzHxoHfCMM3KOjv4AevGB_C9ZZ2NkUtXiqpqQlXVBaNzxmh7db1Y3Dw_zznlMAcArgAOqhPOVDsDCerwDz6uzlNa0XKaQsn6pPq6NZshkyFYk30YSXAkvyKJOOLWdAOSAuLyk6SwiRYTsWEc0WbsSe9Tjr7b_NhGzNsQ3xLpTCp3hcl-jUXjHJasnXOfvA69GUiO5gMHPy7JtoB0Vh05MyQ838_T6uX25mVxP3t8untYXD_OLMg2z1QthGuZdEg7C6AEGuygFlL1PUUQjFMnHDNdGdY2AqUDI51ADoY5BafVwxTbB7PS79GvTfzUwXj9Q4S41CZmbwfUEoUTIGq0UgjWuYa16Jji3KjG1qwtWf-mrPcY_m8wZb0qXzSW12vetEBr3nBZVDCpbAwpRXS_WxnVu_b01J7etaf37RXX5eTyiPjHAayhLYVvR36YeA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893072825</pqid></control><display><type>article</type><title>Fault location of the renewable energy sources connected distribution networks based on time differences of the modal traveling waves</title><source>IEEE Open Access Journals</source><creator>Ren, Xiaofeng ; Pan, Yihang ; Hou, Meng ; Liang, Rui ; Su, Lingdong ; Wang, Quanjin ; Zhang, Peng</creator><creatorcontrib>Ren, Xiaofeng ; Pan, Yihang ; Hou, Meng ; Liang, Rui ; Su, Lingdong ; Wang, Quanjin ; Zhang, Peng</creatorcontrib><description>The topology of the distribution network and direction of the power flow will change when distributed generators (DGs) are connected to it, making it difficult to locate faults using conventional techniques like the impedance approach. Aiming at the two-phase short-circuit grounding faults of active distribution networks, this paper proposes a fault location method based on the time difference of the traveling wave modulus. The first step is the proposal of a zero-mode time-of-arrival calibration method for the ideal frequency band through the analysis of the attenuation of zero-mode traveling wave transmission. Next, define the relative wave velocity, research the quantitative relationship between the modulus transmission time difference and the zero-mode and aerial-mode wave velocities, and establish equation constraints between the modulus transmission time difference, relative wave velocity, and transmission distance. Then, time bounds and dynamic inequality constraints that establish relative wave velocities by fitting. Finally, combined with the abnormal data processing strategy, with the goal of minimizing the weighted deviation of the modulus time difference, the particle swarm optimization (PSO) algorithm is used to solve the fault distance. The PSCAD simulation result demonstrates that the method proposed in this paper has the advantages of high accuracy, strong error tolerance, and strong adaptability, and can quickly and accurately locate faults.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3332633</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Attenuation ; Data processing ; Distributed generation ; Distribution networks ; Electrical grounding ; Energy distribution ; Fault location ; Faults ; Frequencies ; Grounding ; Heuristic algorithms ; Particle swarm optimization ; Power flow ; preferred frequency band ; Renewable energy sources ; Resistance ; Short circuits ; Time-frequency analysis ; Topology ; traveling wave modulus time difference ; Traveling wave tubes ; Traveling waves ; Wave attenuation ; Wave velocity ; Weight measurement ; weighted deviation</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-6744f915fe0bc3364eaeb37456dd0e34120f4f1ab0f4cc84e5f3a5f4e23a1f63</cites><orcidid>0000-0002-5095-9637 ; 0000-0002-2552-0761 ; 0009-0008-2800-8166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10318090$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ren, Xiaofeng</creatorcontrib><creatorcontrib>Pan, Yihang</creatorcontrib><creatorcontrib>Hou, Meng</creatorcontrib><creatorcontrib>Liang, Rui</creatorcontrib><creatorcontrib>Su, Lingdong</creatorcontrib><creatorcontrib>Wang, Quanjin</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><title>Fault location of the renewable energy sources connected distribution networks based on time differences of the modal traveling waves</title><title>IEEE access</title><addtitle>Access</addtitle><description>The topology of the distribution network and direction of the power flow will change when distributed generators (DGs) are connected to it, making it difficult to locate faults using conventional techniques like the impedance approach. Aiming at the two-phase short-circuit grounding faults of active distribution networks, this paper proposes a fault location method based on the time difference of the traveling wave modulus. The first step is the proposal of a zero-mode time-of-arrival calibration method for the ideal frequency band through the analysis of the attenuation of zero-mode traveling wave transmission. Next, define the relative wave velocity, research the quantitative relationship between the modulus transmission time difference and the zero-mode and aerial-mode wave velocities, and establish equation constraints between the modulus transmission time difference, relative wave velocity, and transmission distance. Then, time bounds and dynamic inequality constraints that establish relative wave velocities by fitting. Finally, combined with the abnormal data processing strategy, with the goal of minimizing the weighted deviation of the modulus time difference, the particle swarm optimization (PSO) algorithm is used to solve the fault distance. The PSCAD simulation result demonstrates that the method proposed in this paper has the advantages of high accuracy, strong error tolerance, and strong adaptability, and can quickly and accurately locate faults.</description><subject>Algorithms</subject><subject>Attenuation</subject><subject>Data processing</subject><subject>Distributed generation</subject><subject>Distribution networks</subject><subject>Electrical grounding</subject><subject>Energy distribution</subject><subject>Fault location</subject><subject>Faults</subject><subject>Frequencies</subject><subject>Grounding</subject><subject>Heuristic algorithms</subject><subject>Particle swarm optimization</subject><subject>Power flow</subject><subject>preferred frequency band</subject><subject>Renewable energy sources</subject><subject>Resistance</subject><subject>Short circuits</subject><subject>Time-frequency analysis</subject><subject>Topology</subject><subject>traveling wave modulus time difference</subject><subject>Traveling wave tubes</subject><subject>Traveling waves</subject><subject>Wave attenuation</subject><subject>Wave velocity</subject><subject>Weight measurement</subject><subject>weighted deviation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUc1ONCEQnBhNNOoT6IHkO-8KNDAzR7PxLzHxoHfCMM3KOjv4AevGB_C9ZZ2NkUtXiqpqQlXVBaNzxmh7db1Y3Dw_zznlMAcArgAOqhPOVDsDCerwDz6uzlNa0XKaQsn6pPq6NZshkyFYk30YSXAkvyKJOOLWdAOSAuLyk6SwiRYTsWEc0WbsSe9Tjr7b_NhGzNsQ3xLpTCp3hcl-jUXjHJasnXOfvA69GUiO5gMHPy7JtoB0Vh05MyQ838_T6uX25mVxP3t8untYXD_OLMg2z1QthGuZdEg7C6AEGuygFlL1PUUQjFMnHDNdGdY2AqUDI51ADoY5BafVwxTbB7PS79GvTfzUwXj9Q4S41CZmbwfUEoUTIGq0UgjWuYa16Jji3KjG1qwtWf-mrPcY_m8wZb0qXzSW12vetEBr3nBZVDCpbAwpRXS_WxnVu_b01J7etaf37RXX5eTyiPjHAayhLYVvR36YeA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ren, Xiaofeng</creator><creator>Pan, Yihang</creator><creator>Hou, Meng</creator><creator>Liang, Rui</creator><creator>Su, Lingdong</creator><creator>Wang, Quanjin</creator><creator>Zhang, Peng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5095-9637</orcidid><orcidid>https://orcid.org/0000-0002-2552-0761</orcidid><orcidid>https://orcid.org/0009-0008-2800-8166</orcidid></search><sort><creationdate>20230101</creationdate><title>Fault location of the renewable energy sources connected distribution networks based on time differences of the modal traveling waves</title><author>Ren, Xiaofeng ; Pan, Yihang ; Hou, Meng ; Liang, Rui ; Su, Lingdong ; Wang, Quanjin ; Zhang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-6744f915fe0bc3364eaeb37456dd0e34120f4f1ab0f4cc84e5f3a5f4e23a1f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Attenuation</topic><topic>Data processing</topic><topic>Distributed generation</topic><topic>Distribution networks</topic><topic>Electrical grounding</topic><topic>Energy distribution</topic><topic>Fault location</topic><topic>Faults</topic><topic>Frequencies</topic><topic>Grounding</topic><topic>Heuristic algorithms</topic><topic>Particle swarm optimization</topic><topic>Power flow</topic><topic>preferred frequency band</topic><topic>Renewable energy sources</topic><topic>Resistance</topic><topic>Short circuits</topic><topic>Time-frequency analysis</topic><topic>Topology</topic><topic>traveling wave modulus time difference</topic><topic>Traveling wave tubes</topic><topic>Traveling waves</topic><topic>Wave attenuation</topic><topic>Wave velocity</topic><topic>Weight measurement</topic><topic>weighted deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Xiaofeng</creatorcontrib><creatorcontrib>Pan, Yihang</creatorcontrib><creatorcontrib>Hou, Meng</creatorcontrib><creatorcontrib>Liang, Rui</creatorcontrib><creatorcontrib>Su, Lingdong</creatorcontrib><creatorcontrib>Wang, Quanjin</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Xiaofeng</au><au>Pan, Yihang</au><au>Hou, Meng</au><au>Liang, Rui</au><au>Su, Lingdong</au><au>Wang, Quanjin</au><au>Zhang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault location of the renewable energy sources connected distribution networks based on time differences of the modal traveling waves</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The topology of the distribution network and direction of the power flow will change when distributed generators (DGs) are connected to it, making it difficult to locate faults using conventional techniques like the impedance approach. Aiming at the two-phase short-circuit grounding faults of active distribution networks, this paper proposes a fault location method based on the time difference of the traveling wave modulus. The first step is the proposal of a zero-mode time-of-arrival calibration method for the ideal frequency band through the analysis of the attenuation of zero-mode traveling wave transmission. Next, define the relative wave velocity, research the quantitative relationship between the modulus transmission time difference and the zero-mode and aerial-mode wave velocities, and establish equation constraints between the modulus transmission time difference, relative wave velocity, and transmission distance. Then, time bounds and dynamic inequality constraints that establish relative wave velocities by fitting. Finally, combined with the abnormal data processing strategy, with the goal of minimizing the weighted deviation of the modulus time difference, the particle swarm optimization (PSO) algorithm is used to solve the fault distance. The PSCAD simulation result demonstrates that the method proposed in this paper has the advantages of high accuracy, strong error tolerance, and strong adaptability, and can quickly and accurately locate faults.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3332633</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5095-9637</orcidid><orcidid>https://orcid.org/0000-0002-2552-0761</orcidid><orcidid>https://orcid.org/0009-0008-2800-8166</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3332633
source IEEE Open Access Journals
subjects Algorithms
Attenuation
Data processing
Distributed generation
Distribution networks
Electrical grounding
Energy distribution
Fault location
Faults
Frequencies
Grounding
Heuristic algorithms
Particle swarm optimization
Power flow
preferred frequency band
Renewable energy sources
Resistance
Short circuits
Time-frequency analysis
Topology
traveling wave modulus time difference
Traveling wave tubes
Traveling waves
Wave attenuation
Wave velocity
Weight measurement
weighted deviation
title Fault location of the renewable energy sources connected distribution networks based on time differences of the modal traveling waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20location%20of%20the%20renewable%20energy%20sources%20connected%20distribution%20networks%20based%20on%20time%20differences%20of%20the%20modal%20traveling%20waves&rft.jtitle=IEEE%20access&rft.au=Ren,%20Xiaofeng&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3332633&rft_dat=%3Cproquest_cross%3E2893072825%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-6744f915fe0bc3364eaeb37456dd0e34120f4f1ab0f4cc84e5f3a5f4e23a1f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2893072825&rft_id=info:pmid/&rft_ieee_id=10318090&rfr_iscdi=true