Loading…
A Three-way Clustering Mechanism to Handle Overlapping Regions
The conventional clustering methods assume a binary classification and establish a complete inclusive or exclusive type relation of an object with a cluster. In contrast, a three-way paradigm handles situations where an object may or may not belong to a cluster, i.e., uncertain. The objects belongin...
Saved in:
Published in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Shah, Anwar Ali, Bahar Wahab, Fazal Ullah, Inam Alqahtani, Fayez Tolba, Amr |
description | The conventional clustering methods assume a binary classification and establish a complete inclusive or exclusive type relation of an object with a cluster. In contrast, a three-way paradigm handles situations where an object may or may not belong to a cluster, i.e., uncertain. The objects belonging to the uncertainty region may lead to inclusion or exclusion after further processing and information. One of the use cases of the three-way paradigm is the overlapping region between different clusters. Effective computation of overlapping objects is crucial to the application's overall success. In this paper, we employ a three-way clustering approach inspired by image blurring and sharpening operations that consider the objects in the inside or outside regions of a cluster to be non-overlapping. The objects belonging to the partial region of more than one cluster are considered overlapping. The experiment conducted on Birds, Scenes, and 20 newsgroups datasets indicates that the proposed approach improves the F1 measure and hamming loss up to by 18.6% and 4.9%, respectively. Furthermore, the system's robustness for overlapping regions is observed using typical clustering measures. The experimental results suggested that the proposed approach may improve the computation of overlapping regions effectively. |
doi_str_mv | 10.1109/ACCESS.2024.3349620 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3349620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10380578</ieee_id><doaj_id>oai_doaj_org_article_3573e0da037b4882ad09262fae39bbbb</doaj_id><sourcerecordid>2913513631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3</originalsourceid><addsrcrecordid>eNpNUMFKw0AQDaJgqf0CPQQ8p-7uZJPsRSih2kKlYOt5mSSTNiVN6m6q9O_dGpHOZYY3897MPM-752zMOVNPkzSdrlZjwUQ4BghVJNiVNxA8UgFIiK4v6ltvZO2OuUgcJOOB9zzx11tDFHzjyU_ro-3IVM3Gf6N8i01l937X-jNsipr85ReZGg-Hc_-dNlXb2DvvpsTa0ugvD72Pl-k6nQWL5es8nSyCPGSqCyIZybgsUJISITJEkTNehEksJbhCSKUEi5li6PAsJ6IshhBKSaXEiDIYevNet2hxpw-m2qM56RYr_Qu0ZqPRdFVekwYZA7ECGcRZmCQCC6ZEJEokUJkLp_XYax1M-3kk2-ldezSNO18LxUFyiIC7KeinctNaa6j838qZPvuue9_12Xf957tjPfSsyv1wwYCEyTiBH3VsfPs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913513631</pqid></control><display><type>article</type><title>A Three-way Clustering Mechanism to Handle Overlapping Regions</title><source>IEEE Open Access Journals</source><creator>Shah, Anwar ; Ali, Bahar ; Wahab, Fazal ; Ullah, Inam ; Alqahtani, Fayez ; Tolba, Amr</creator><creatorcontrib>Shah, Anwar ; Ali, Bahar ; Wahab, Fazal ; Ullah, Inam ; Alqahtani, Fayez ; Tolba, Amr</creatorcontrib><description>The conventional clustering methods assume a binary classification and establish a complete inclusive or exclusive type relation of an object with a cluster. In contrast, a three-way paradigm handles situations where an object may or may not belong to a cluster, i.e., uncertain. The objects belonging to the uncertainty region may lead to inclusion or exclusion after further processing and information. One of the use cases of the three-way paradigm is the overlapping region between different clusters. Effective computation of overlapping objects is crucial to the application's overall success. In this paper, we employ a three-way clustering approach inspired by image blurring and sharpening operations that consider the objects in the inside or outside regions of a cluster to be non-overlapping. The objects belonging to the partial region of more than one cluster are considered overlapping. The experiment conducted on Birds, Scenes, and 20 newsgroups datasets indicates that the proposed approach improves the F1 measure and hamming loss up to by 18.6% and 4.9%, respectively. Furthermore, the system's robustness for overlapping regions is observed using typical clustering measures. The experimental results suggested that the proposed approach may improve the computation of overlapping regions effectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3349620</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Blurring ; Clustering ; Clustering algorithms ; Computation ; Filtering ; Fuzzy sets ; Handles ; Image processing ; Loss measurement ; Object recognition ; Overlapping ; Rough sets ; sharpening ; Three-way clustering</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3</citedby><cites>FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3</cites><orcidid>0000-0002-5879-569X ; 0000-0001-8972-5953 ; 0000-0001-5859-1219 ; 0000-0003-3439-6413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10380578$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Shah, Anwar</creatorcontrib><creatorcontrib>Ali, Bahar</creatorcontrib><creatorcontrib>Wahab, Fazal</creatorcontrib><creatorcontrib>Ullah, Inam</creatorcontrib><creatorcontrib>Alqahtani, Fayez</creatorcontrib><creatorcontrib>Tolba, Amr</creatorcontrib><title>A Three-way Clustering Mechanism to Handle Overlapping Regions</title><title>IEEE access</title><addtitle>Access</addtitle><description>The conventional clustering methods assume a binary classification and establish a complete inclusive or exclusive type relation of an object with a cluster. In contrast, a three-way paradigm handles situations where an object may or may not belong to a cluster, i.e., uncertain. The objects belonging to the uncertainty region may lead to inclusion or exclusion after further processing and information. One of the use cases of the three-way paradigm is the overlapping region between different clusters. Effective computation of overlapping objects is crucial to the application's overall success. In this paper, we employ a three-way clustering approach inspired by image blurring and sharpening operations that consider the objects in the inside or outside regions of a cluster to be non-overlapping. The objects belonging to the partial region of more than one cluster are considered overlapping. The experiment conducted on Birds, Scenes, and 20 newsgroups datasets indicates that the proposed approach improves the F1 measure and hamming loss up to by 18.6% and 4.9%, respectively. Furthermore, the system's robustness for overlapping regions is observed using typical clustering measures. The experimental results suggested that the proposed approach may improve the computation of overlapping regions effectively.</description><subject>Blurring</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Computation</subject><subject>Filtering</subject><subject>Fuzzy sets</subject><subject>Handles</subject><subject>Image processing</subject><subject>Loss measurement</subject><subject>Object recognition</subject><subject>Overlapping</subject><subject>Rough sets</subject><subject>sharpening</subject><subject>Three-way clustering</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFKw0AQDaJgqf0CPQQ8p-7uZJPsRSih2kKlYOt5mSSTNiVN6m6q9O_dGpHOZYY3897MPM-752zMOVNPkzSdrlZjwUQ4BghVJNiVNxA8UgFIiK4v6ltvZO2OuUgcJOOB9zzx11tDFHzjyU_ro-3IVM3Gf6N8i01l937X-jNsipr85ReZGg-Hc_-dNlXb2DvvpsTa0ugvD72Pl-k6nQWL5es8nSyCPGSqCyIZybgsUJISITJEkTNehEksJbhCSKUEi5li6PAsJ6IshhBKSaXEiDIYevNet2hxpw-m2qM56RYr_Qu0ZqPRdFVekwYZA7ECGcRZmCQCC6ZEJEokUJkLp_XYax1M-3kk2-ldezSNO18LxUFyiIC7KeinctNaa6j838qZPvuue9_12Xf957tjPfSsyv1wwYCEyTiBH3VsfPs</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Shah, Anwar</creator><creator>Ali, Bahar</creator><creator>Wahab, Fazal</creator><creator>Ullah, Inam</creator><creator>Alqahtani, Fayez</creator><creator>Tolba, Amr</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5879-569X</orcidid><orcidid>https://orcid.org/0000-0001-8972-5953</orcidid><orcidid>https://orcid.org/0000-0001-5859-1219</orcidid><orcidid>https://orcid.org/0000-0003-3439-6413</orcidid></search><sort><creationdate>20240101</creationdate><title>A Three-way Clustering Mechanism to Handle Overlapping Regions</title><author>Shah, Anwar ; Ali, Bahar ; Wahab, Fazal ; Ullah, Inam ; Alqahtani, Fayez ; Tolba, Amr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blurring</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Computation</topic><topic>Filtering</topic><topic>Fuzzy sets</topic><topic>Handles</topic><topic>Image processing</topic><topic>Loss measurement</topic><topic>Object recognition</topic><topic>Overlapping</topic><topic>Rough sets</topic><topic>sharpening</topic><topic>Three-way clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Anwar</creatorcontrib><creatorcontrib>Ali, Bahar</creatorcontrib><creatorcontrib>Wahab, Fazal</creatorcontrib><creatorcontrib>Ullah, Inam</creatorcontrib><creatorcontrib>Alqahtani, Fayez</creatorcontrib><creatorcontrib>Tolba, Amr</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Anwar</au><au>Ali, Bahar</au><au>Wahab, Fazal</au><au>Ullah, Inam</au><au>Alqahtani, Fayez</au><au>Tolba, Amr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Three-way Clustering Mechanism to Handle Overlapping Regions</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The conventional clustering methods assume a binary classification and establish a complete inclusive or exclusive type relation of an object with a cluster. In contrast, a three-way paradigm handles situations where an object may or may not belong to a cluster, i.e., uncertain. The objects belonging to the uncertainty region may lead to inclusion or exclusion after further processing and information. One of the use cases of the three-way paradigm is the overlapping region between different clusters. Effective computation of overlapping objects is crucial to the application's overall success. In this paper, we employ a three-way clustering approach inspired by image blurring and sharpening operations that consider the objects in the inside or outside regions of a cluster to be non-overlapping. The objects belonging to the partial region of more than one cluster are considered overlapping. The experiment conducted on Birds, Scenes, and 20 newsgroups datasets indicates that the proposed approach improves the F1 measure and hamming loss up to by 18.6% and 4.9%, respectively. Furthermore, the system's robustness for overlapping regions is observed using typical clustering measures. The experimental results suggested that the proposed approach may improve the computation of overlapping regions effectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3349620</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5879-569X</orcidid><orcidid>https://orcid.org/0000-0001-8972-5953</orcidid><orcidid>https://orcid.org/0000-0001-5859-1219</orcidid><orcidid>https://orcid.org/0000-0003-3439-6413</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3349620 |
source | IEEE Open Access Journals |
subjects | Blurring Clustering Clustering algorithms Computation Filtering Fuzzy sets Handles Image processing Loss measurement Object recognition Overlapping Rough sets sharpening Three-way clustering |
title | A Three-way Clustering Mechanism to Handle Overlapping Regions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Three-way%20Clustering%20Mechanism%20to%20Handle%20Overlapping%20Regions&rft.jtitle=IEEE%20access&rft.au=Shah,%20Anwar&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3349620&rft_dat=%3Cproquest_cross%3E2913513631%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913513631&rft_id=info:pmid/&rft_ieee_id=10380578&rfr_iscdi=true |