Loading…

A Three-way Clustering Mechanism to Handle Overlapping Regions

The conventional clustering methods assume a binary classification and establish a complete inclusive or exclusive type relation of an object with a cluster. In contrast, a three-way paradigm handles situations where an object may or may not belong to a cluster, i.e., uncertain. The objects belongin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024-01, Vol.12, p.1-1
Main Authors: Shah, Anwar, Ali, Bahar, Wahab, Fazal, Ullah, Inam, Alqahtani, Fayez, Tolba, Amr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3
cites cdi_FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 12
creator Shah, Anwar
Ali, Bahar
Wahab, Fazal
Ullah, Inam
Alqahtani, Fayez
Tolba, Amr
description The conventional clustering methods assume a binary classification and establish a complete inclusive or exclusive type relation of an object with a cluster. In contrast, a three-way paradigm handles situations where an object may or may not belong to a cluster, i.e., uncertain. The objects belonging to the uncertainty region may lead to inclusion or exclusion after further processing and information. One of the use cases of the three-way paradigm is the overlapping region between different clusters. Effective computation of overlapping objects is crucial to the application's overall success. In this paper, we employ a three-way clustering approach inspired by image blurring and sharpening operations that consider the objects in the inside or outside regions of a cluster to be non-overlapping. The objects belonging to the partial region of more than one cluster are considered overlapping. The experiment conducted on Birds, Scenes, and 20 newsgroups datasets indicates that the proposed approach improves the F1 measure and hamming loss up to by 18.6% and 4.9%, respectively. Furthermore, the system's robustness for overlapping regions is observed using typical clustering measures. The experimental results suggested that the proposed approach may improve the computation of overlapping regions effectively.
doi_str_mv 10.1109/ACCESS.2024.3349620
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3349620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10380578</ieee_id><doaj_id>oai_doaj_org_article_3573e0da037b4882ad09262fae39bbbb</doaj_id><sourcerecordid>2913513631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3</originalsourceid><addsrcrecordid>eNpNUMFKw0AQDaJgqf0CPQQ8p-7uZJPsRSih2kKlYOt5mSSTNiVN6m6q9O_dGpHOZYY3897MPM-752zMOVNPkzSdrlZjwUQ4BghVJNiVNxA8UgFIiK4v6ltvZO2OuUgcJOOB9zzx11tDFHzjyU_ro-3IVM3Gf6N8i01l937X-jNsipr85ReZGg-Hc_-dNlXb2DvvpsTa0ugvD72Pl-k6nQWL5es8nSyCPGSqCyIZybgsUJISITJEkTNehEksJbhCSKUEi5li6PAsJ6IshhBKSaXEiDIYevNet2hxpw-m2qM56RYr_Qu0ZqPRdFVekwYZA7ECGcRZmCQCC6ZEJEokUJkLp_XYax1M-3kk2-ldezSNO18LxUFyiIC7KeinctNaa6j838qZPvuue9_12Xf957tjPfSsyv1wwYCEyTiBH3VsfPs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913513631</pqid></control><display><type>article</type><title>A Three-way Clustering Mechanism to Handle Overlapping Regions</title><source>IEEE Open Access Journals</source><creator>Shah, Anwar ; Ali, Bahar ; Wahab, Fazal ; Ullah, Inam ; Alqahtani, Fayez ; Tolba, Amr</creator><creatorcontrib>Shah, Anwar ; Ali, Bahar ; Wahab, Fazal ; Ullah, Inam ; Alqahtani, Fayez ; Tolba, Amr</creatorcontrib><description>The conventional clustering methods assume a binary classification and establish a complete inclusive or exclusive type relation of an object with a cluster. In contrast, a three-way paradigm handles situations where an object may or may not belong to a cluster, i.e., uncertain. The objects belonging to the uncertainty region may lead to inclusion or exclusion after further processing and information. One of the use cases of the three-way paradigm is the overlapping region between different clusters. Effective computation of overlapping objects is crucial to the application's overall success. In this paper, we employ a three-way clustering approach inspired by image blurring and sharpening operations that consider the objects in the inside or outside regions of a cluster to be non-overlapping. The objects belonging to the partial region of more than one cluster are considered overlapping. The experiment conducted on Birds, Scenes, and 20 newsgroups datasets indicates that the proposed approach improves the F1 measure and hamming loss up to by 18.6% and 4.9%, respectively. Furthermore, the system's robustness for overlapping regions is observed using typical clustering measures. The experimental results suggested that the proposed approach may improve the computation of overlapping regions effectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3349620</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Blurring ; Clustering ; Clustering algorithms ; Computation ; Filtering ; Fuzzy sets ; Handles ; Image processing ; Loss measurement ; Object recognition ; Overlapping ; Rough sets ; sharpening ; Three-way clustering</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3</citedby><cites>FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3</cites><orcidid>0000-0002-5879-569X ; 0000-0001-8972-5953 ; 0000-0001-5859-1219 ; 0000-0003-3439-6413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10380578$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Shah, Anwar</creatorcontrib><creatorcontrib>Ali, Bahar</creatorcontrib><creatorcontrib>Wahab, Fazal</creatorcontrib><creatorcontrib>Ullah, Inam</creatorcontrib><creatorcontrib>Alqahtani, Fayez</creatorcontrib><creatorcontrib>Tolba, Amr</creatorcontrib><title>A Three-way Clustering Mechanism to Handle Overlapping Regions</title><title>IEEE access</title><addtitle>Access</addtitle><description>The conventional clustering methods assume a binary classification and establish a complete inclusive or exclusive type relation of an object with a cluster. In contrast, a three-way paradigm handles situations where an object may or may not belong to a cluster, i.e., uncertain. The objects belonging to the uncertainty region may lead to inclusion or exclusion after further processing and information. One of the use cases of the three-way paradigm is the overlapping region between different clusters. Effective computation of overlapping objects is crucial to the application's overall success. In this paper, we employ a three-way clustering approach inspired by image blurring and sharpening operations that consider the objects in the inside or outside regions of a cluster to be non-overlapping. The objects belonging to the partial region of more than one cluster are considered overlapping. The experiment conducted on Birds, Scenes, and 20 newsgroups datasets indicates that the proposed approach improves the F1 measure and hamming loss up to by 18.6% and 4.9%, respectively. Furthermore, the system's robustness for overlapping regions is observed using typical clustering measures. The experimental results suggested that the proposed approach may improve the computation of overlapping regions effectively.</description><subject>Blurring</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Computation</subject><subject>Filtering</subject><subject>Fuzzy sets</subject><subject>Handles</subject><subject>Image processing</subject><subject>Loss measurement</subject><subject>Object recognition</subject><subject>Overlapping</subject><subject>Rough sets</subject><subject>sharpening</subject><subject>Three-way clustering</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFKw0AQDaJgqf0CPQQ8p-7uZJPsRSih2kKlYOt5mSSTNiVN6m6q9O_dGpHOZYY3897MPM-752zMOVNPkzSdrlZjwUQ4BghVJNiVNxA8UgFIiK4v6ltvZO2OuUgcJOOB9zzx11tDFHzjyU_ro-3IVM3Gf6N8i01l937X-jNsipr85ReZGg-Hc_-dNlXb2DvvpsTa0ugvD72Pl-k6nQWL5es8nSyCPGSqCyIZybgsUJISITJEkTNehEksJbhCSKUEi5li6PAsJ6IshhBKSaXEiDIYevNet2hxpw-m2qM56RYr_Qu0ZqPRdFVekwYZA7ECGcRZmCQCC6ZEJEokUJkLp_XYax1M-3kk2-ldezSNO18LxUFyiIC7KeinctNaa6j838qZPvuue9_12Xf957tjPfSsyv1wwYCEyTiBH3VsfPs</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Shah, Anwar</creator><creator>Ali, Bahar</creator><creator>Wahab, Fazal</creator><creator>Ullah, Inam</creator><creator>Alqahtani, Fayez</creator><creator>Tolba, Amr</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5879-569X</orcidid><orcidid>https://orcid.org/0000-0001-8972-5953</orcidid><orcidid>https://orcid.org/0000-0001-5859-1219</orcidid><orcidid>https://orcid.org/0000-0003-3439-6413</orcidid></search><sort><creationdate>20240101</creationdate><title>A Three-way Clustering Mechanism to Handle Overlapping Regions</title><author>Shah, Anwar ; Ali, Bahar ; Wahab, Fazal ; Ullah, Inam ; Alqahtani, Fayez ; Tolba, Amr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blurring</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Computation</topic><topic>Filtering</topic><topic>Fuzzy sets</topic><topic>Handles</topic><topic>Image processing</topic><topic>Loss measurement</topic><topic>Object recognition</topic><topic>Overlapping</topic><topic>Rough sets</topic><topic>sharpening</topic><topic>Three-way clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Anwar</creatorcontrib><creatorcontrib>Ali, Bahar</creatorcontrib><creatorcontrib>Wahab, Fazal</creatorcontrib><creatorcontrib>Ullah, Inam</creatorcontrib><creatorcontrib>Alqahtani, Fayez</creatorcontrib><creatorcontrib>Tolba, Amr</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Anwar</au><au>Ali, Bahar</au><au>Wahab, Fazal</au><au>Ullah, Inam</au><au>Alqahtani, Fayez</au><au>Tolba, Amr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Three-way Clustering Mechanism to Handle Overlapping Regions</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The conventional clustering methods assume a binary classification and establish a complete inclusive or exclusive type relation of an object with a cluster. In contrast, a three-way paradigm handles situations where an object may or may not belong to a cluster, i.e., uncertain. The objects belonging to the uncertainty region may lead to inclusion or exclusion after further processing and information. One of the use cases of the three-way paradigm is the overlapping region between different clusters. Effective computation of overlapping objects is crucial to the application's overall success. In this paper, we employ a three-way clustering approach inspired by image blurring and sharpening operations that consider the objects in the inside or outside regions of a cluster to be non-overlapping. The objects belonging to the partial region of more than one cluster are considered overlapping. The experiment conducted on Birds, Scenes, and 20 newsgroups datasets indicates that the proposed approach improves the F1 measure and hamming loss up to by 18.6% and 4.9%, respectively. Furthermore, the system's robustness for overlapping regions is observed using typical clustering measures. The experimental results suggested that the proposed approach may improve the computation of overlapping regions effectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3349620</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5879-569X</orcidid><orcidid>https://orcid.org/0000-0001-8972-5953</orcidid><orcidid>https://orcid.org/0000-0001-5859-1219</orcidid><orcidid>https://orcid.org/0000-0003-3439-6413</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024-01, Vol.12, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3349620
source IEEE Open Access Journals
subjects Blurring
Clustering
Clustering algorithms
Computation
Filtering
Fuzzy sets
Handles
Image processing
Loss measurement
Object recognition
Overlapping
Rough sets
sharpening
Three-way clustering
title A Three-way Clustering Mechanism to Handle Overlapping Regions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Three-way%20Clustering%20Mechanism%20to%20Handle%20Overlapping%20Regions&rft.jtitle=IEEE%20access&rft.au=Shah,%20Anwar&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3349620&rft_dat=%3Cproquest_cross%3E2913513631%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-65657fda5e924a0aa2c01d48755301d2599207090ac01bceeeb7343f5ef5a6eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913513631&rft_id=info:pmid/&rft_ieee_id=10380578&rfr_iscdi=true