Loading…
Improved LS-SVM Boiler Combustion Model based on Affinity Propagation
In the global effort to promote green energy policies, understanding and optimizing boiler combustion processes in coal-fired power plants is crucial. During unit start-ups, shutdowns, and load deep peak regulation, significant energy-saving potential can be harnessed in boilers. This paper focuses...
Saved in:
Published in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-90b5df394adba5a8c2ae0626e002577ffb6bad81d88e154a27a83a6f4b36610e3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Yan, Ming Wang, Liang Zhang, Meiling Shi, Pan |
description | In the global effort to promote green energy policies, understanding and optimizing boiler combustion processes in coal-fired power plants is crucial. During unit start-ups, shutdowns, and load deep peak regulation, significant energy-saving potential can be harnessed in boilers. This paper focuses on a 600MW supercritical coal-fired power unit and presents an improved Least Squares Support Vector Machine (LS-SVM) model with refined initial parameters. By combining the improved LS-SVM with Affinity Propagation (AP) clustering, a combustion efficiency model for boilers is constructed. The experimental results demonstrate that the AP-based improved LS-SVM model not only reduces computational complexity and training time but also enhances predictive accuracy and generalization performance. |
doi_str_mv | 10.1109/ACCESS.2024.3372660 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3372660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10458673</ieee_id><doaj_id>oai_doaj_org_article_08596f9a79124b379b9ecf8d71e87263</doaj_id><sourcerecordid>2956387923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-90b5df394adba5a8c2ae0626e002577ffb6bad81d88e154a27a83a6f4b36610e3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOHS_QC8KXnfmo_m6nGXqYEOh6m04bZPR0S0z7YT9ezM7ZOcmJ4f3fU_yIHRH8IQQrB-neT4rignFNJswJqkQ-AKNKBE6ZZyJy7P-Go27bo1jqTjicoRm880u-B9bJ4siLb6WyZNvWhuS3G_Kfdc3fpssfW3bpIQuiuJ16lyzbfpD8h78DlZw1NyiKwdtZ8en8wZ9Ps8-8td08fYyz6eLtGJc96nGJa8d0xnUJXBQFQWLBRUWY8qldK4UJdSK1EpZwjOgEhQD4bKSCUGwZTdoPuTWHtZmF5oNhIPx0Ji_gQ8rA6FvqtYarLgWToPUhEa_1KW2lVO1JFZFRixmPQxZ8f_fe9v1Zu33YRufb6jmgimp6VHFBlUVfNcF6_63EmyO-M2A3xzxmxP-6LofXI219syRcSUkY79WSH8p</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956387923</pqid></control><display><type>article</type><title>Improved LS-SVM Boiler Combustion Model based on Affinity Propagation</title><source>IEEE Open Access Journals</source><creator>Yan, Ming ; Wang, Liang ; Zhang, Meiling ; Shi, Pan</creator><creatorcontrib>Yan, Ming ; Wang, Liang ; Zhang, Meiling ; Shi, Pan</creatorcontrib><description>In the global effort to promote green energy policies, understanding and optimizing boiler combustion processes in coal-fired power plants is crucial. During unit start-ups, shutdowns, and load deep peak regulation, significant energy-saving potential can be harnessed in boilers. This paper focuses on a 600MW supercritical coal-fired power unit and presents an improved Least Squares Support Vector Machine (LS-SVM) model with refined initial parameters. By combining the improved LS-SVM with Affinity Propagation (AP) clustering, a combustion efficiency model for boilers is constructed. The experimental results demonstrate that the AP-based improved LS-SVM model not only reduces computational complexity and training time but also enhances predictive accuracy and generalization performance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3372660</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Affinity ; AP clustering algorithm ; Boiler efficiency ; Boilers ; Carbon ; carbon content in fly ash ; Clean energy ; Clustering ; Clustering algorithms ; Coal-fired power plants ; Combustion efficiency ; Energy efficiency ; Fly ash ; Green energy ; hybrid modeling ; Hybrid power systems ; LS-SVM ; Oxygen ; oxygen content of flue gas ; Performance prediction ; Support vector machines</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-90b5df394adba5a8c2ae0626e002577ffb6bad81d88e154a27a83a6f4b36610e3</cites><orcidid>0009-0006-1359-6167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10458673$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yan, Ming</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Zhang, Meiling</creatorcontrib><creatorcontrib>Shi, Pan</creatorcontrib><title>Improved LS-SVM Boiler Combustion Model based on Affinity Propagation</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the global effort to promote green energy policies, understanding and optimizing boiler combustion processes in coal-fired power plants is crucial. During unit start-ups, shutdowns, and load deep peak regulation, significant energy-saving potential can be harnessed in boilers. This paper focuses on a 600MW supercritical coal-fired power unit and presents an improved Least Squares Support Vector Machine (LS-SVM) model with refined initial parameters. By combining the improved LS-SVM with Affinity Propagation (AP) clustering, a combustion efficiency model for boilers is constructed. The experimental results demonstrate that the AP-based improved LS-SVM model not only reduces computational complexity and training time but also enhances predictive accuracy and generalization performance.</description><subject>Affinity</subject><subject>AP clustering algorithm</subject><subject>Boiler efficiency</subject><subject>Boilers</subject><subject>Carbon</subject><subject>carbon content in fly ash</subject><subject>Clean energy</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Coal-fired power plants</subject><subject>Combustion efficiency</subject><subject>Energy efficiency</subject><subject>Fly ash</subject><subject>Green energy</subject><subject>hybrid modeling</subject><subject>Hybrid power systems</subject><subject>LS-SVM</subject><subject>Oxygen</subject><subject>oxygen content of flue gas</subject><subject>Performance prediction</subject><subject>Support vector machines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkF1LwzAUhoMoOHS_QC8KXnfmo_m6nGXqYEOh6m04bZPR0S0z7YT9ezM7ZOcmJ4f3fU_yIHRH8IQQrB-neT4rignFNJswJqkQ-AKNKBE6ZZyJy7P-Go27bo1jqTjicoRm880u-B9bJ4siLb6WyZNvWhuS3G_Kfdc3fpssfW3bpIQuiuJ16lyzbfpD8h78DlZw1NyiKwdtZ8en8wZ9Ps8-8td08fYyz6eLtGJc96nGJa8d0xnUJXBQFQWLBRUWY8qldK4UJdSK1EpZwjOgEhQD4bKSCUGwZTdoPuTWHtZmF5oNhIPx0Ji_gQ8rA6FvqtYarLgWToPUhEa_1KW2lVO1JFZFRixmPQxZ8f_fe9v1Zu33YRufb6jmgimp6VHFBlUVfNcF6_63EmyO-M2A3xzxmxP-6LofXI219syRcSUkY79WSH8p</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Yan, Ming</creator><creator>Wang, Liang</creator><creator>Zhang, Meiling</creator><creator>Shi, Pan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-1359-6167</orcidid></search><sort><creationdate>20240101</creationdate><title>Improved LS-SVM Boiler Combustion Model based on Affinity Propagation</title><author>Yan, Ming ; Wang, Liang ; Zhang, Meiling ; Shi, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-90b5df394adba5a8c2ae0626e002577ffb6bad81d88e154a27a83a6f4b36610e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affinity</topic><topic>AP clustering algorithm</topic><topic>Boiler efficiency</topic><topic>Boilers</topic><topic>Carbon</topic><topic>carbon content in fly ash</topic><topic>Clean energy</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Coal-fired power plants</topic><topic>Combustion efficiency</topic><topic>Energy efficiency</topic><topic>Fly ash</topic><topic>Green energy</topic><topic>hybrid modeling</topic><topic>Hybrid power systems</topic><topic>LS-SVM</topic><topic>Oxygen</topic><topic>oxygen content of flue gas</topic><topic>Performance prediction</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ming</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Zhang, Meiling</creatorcontrib><creatorcontrib>Shi, Pan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ming</au><au>Wang, Liang</au><au>Zhang, Meiling</au><au>Shi, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved LS-SVM Boiler Combustion Model based on Affinity Propagation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the global effort to promote green energy policies, understanding and optimizing boiler combustion processes in coal-fired power plants is crucial. During unit start-ups, shutdowns, and load deep peak regulation, significant energy-saving potential can be harnessed in boilers. This paper focuses on a 600MW supercritical coal-fired power unit and presents an improved Least Squares Support Vector Machine (LS-SVM) model with refined initial parameters. By combining the improved LS-SVM with Affinity Propagation (AP) clustering, a combustion efficiency model for boilers is constructed. The experimental results demonstrate that the AP-based improved LS-SVM model not only reduces computational complexity and training time but also enhances predictive accuracy and generalization performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3372660</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0006-1359-6167</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3372660 |
source | IEEE Open Access Journals |
subjects | Affinity AP clustering algorithm Boiler efficiency Boilers Carbon carbon content in fly ash Clean energy Clustering Clustering algorithms Coal-fired power plants Combustion efficiency Energy efficiency Fly ash Green energy hybrid modeling Hybrid power systems LS-SVM Oxygen oxygen content of flue gas Performance prediction Support vector machines |
title | Improved LS-SVM Boiler Combustion Model based on Affinity Propagation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20LS-SVM%20Boiler%20Combustion%20Model%20based%20on%20Affinity%20Propagation&rft.jtitle=IEEE%20access&rft.au=Yan,%20Ming&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3372660&rft_dat=%3Cproquest_cross%3E2956387923%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-90b5df394adba5a8c2ae0626e002577ffb6bad81d88e154a27a83a6f4b36610e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2956387923&rft_id=info:pmid/&rft_ieee_id=10458673&rfr_iscdi=true |