Loading…
PREVIR: Fortifying Vehicular Networks Against Denial of Service Attacks
Vehicular networks are expanding their applications for future sustainability. The reported increasing rate of data breaches through vehicular networks by Distributed Denial of Service (DDoS) type of intrusion creates concern for such networks. Existing security solutions focus only on intrusion det...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.48301-48320 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-e4951dd22b8227bb563c08818f0bd92feb3b29d3d52b37689400fd217f5bb8023 |
container_end_page | 48320 |
container_issue | |
container_start_page | 48301 |
container_title | IEEE access |
container_volume | 12 |
creator | Verma, Amandeep Saha, Rahul Kumar, Gulshan Conti, Mauro Kim, Tai-Hoon |
description | Vehicular networks are expanding their applications for future sustainability. The reported increasing rate of data breaches through vehicular networks by Distributed Denial of Service (DDoS) type of intrusion creates concern for such networks. Existing security solutions focus only on intrusion detection. However, prevention solutions are more proactive and provide security by probabilistic analysis. Existing prevention models for vehicular networks have low accuracy and are unable to handle zero-day attacks and advanced persistent threats. In this paper, we solve the problems mentioned above and introduce Predictive Risk Evaluation for Vehicular Infrastructure Resilience (PREVIR), the first amalgamated model of logit method (statistical analysis) and LogitBoost method (machine learning) to prevent DDoS attacks in vehicular networks. In PREVIR, the logit model predicts the packet probabilities for identifying maliciousness. The machine learning method improves PREVIR's performance through iterative refinement of the model's periodic updates based on new traffic parameters. We run a set of experiments on PREVIR. We use our NS3-generated dataset, NSL-KDD public dataset, and CIC-DDoS public dataset. PREVIR analyses multiple attack types, including UDP flood, TCP flood, mixed flooding, U2R, Probe, and R2L attacks. The results show that PREVIR classifies packets with accuracy up to 99.99%. Our proposed PREVIR model achieves a True Positive Ratio (TPR) up to 100% and an average False Positive Ratio (FPR) of 35%. The comparative analysis shows that PREVIR's efficiency is 20% better on average in the prevention of malicious packets as compared to the state-of-the-art models. |
doi_str_mv | 10.1109/ACCESS.2024.3382992 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3382992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10485425</ieee_id><doaj_id>oai_doaj_org_article_04bef58d19e54b349dad9cf2e4641aa8</doaj_id><sourcerecordid>3033618946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e4951dd22b8227bb563c08818f0bd92feb3b29d3d52b37689400fd217f5bb8023</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX-BHhY8t-ZzN_G21FYLRcVqryHZTGpq3dRkq_jvXV2RzmWGx7z3ZnhZdobREGMkL6vRaDyfDwkibEipIFKSveyI4EIOKKfF_s58mJ2mtEJdiQ7i5VF28_A4Xkwfr_JJiK13X75Z5gt48fV2rWN-B-1niK8pr5baN6nNr6Hxep0Hl88hfvga8qptdf2aTrIDp9cJTv_6cfY8GT-Nbgez-5vpqJoNasplOwAmObaWECMIKY3hBa2REFg4ZKwkDgw1RFpqOTG0LIRkCDlLcOm4MQIRepxNe10b9Epton_T8UsF7dUvEOJS6e6Reg0KMQOOC4slcGYok1ZbWTsCrGBYa9FpXfRamxjet5BatQrb2HTnK4ooLXBnX3RbtN-qY0gpgvt3xUj9BKD6ANRPAOovgI513rM8AOwwmOCMcPoNP7F_7g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033618946</pqid></control><display><type>article</type><title>PREVIR: Fortifying Vehicular Networks Against Denial of Service Attacks</title><source>IEEE Xplore Open Access Journals</source><creator>Verma, Amandeep ; Saha, Rahul ; Kumar, Gulshan ; Conti, Mauro ; Kim, Tai-Hoon</creator><creatorcontrib>Verma, Amandeep ; Saha, Rahul ; Kumar, Gulshan ; Conti, Mauro ; Kim, Tai-Hoon</creatorcontrib><description>Vehicular networks are expanding their applications for future sustainability. The reported increasing rate of data breaches through vehicular networks by Distributed Denial of Service (DDoS) type of intrusion creates concern for such networks. Existing security solutions focus only on intrusion detection. However, prevention solutions are more proactive and provide security by probabilistic analysis. Existing prevention models for vehicular networks have low accuracy and are unable to handle zero-day attacks and advanced persistent threats. In this paper, we solve the problems mentioned above and introduce Predictive Risk Evaluation for Vehicular Infrastructure Resilience (PREVIR), the first amalgamated model of logit method (statistical analysis) and LogitBoost method (machine learning) to prevent DDoS attacks in vehicular networks. In PREVIR, the logit model predicts the packet probabilities for identifying maliciousness. The machine learning method improves PREVIR's performance through iterative refinement of the model's periodic updates based on new traffic parameters. We run a set of experiments on PREVIR. We use our NS3-generated dataset, NSL-KDD public dataset, and CIC-DDoS public dataset. PREVIR analyses multiple attack types, including UDP flood, TCP flood, mixed flooding, U2R, Probe, and R2L attacks. The results show that PREVIR classifies packets with accuracy up to 99.99%. Our proposed PREVIR model achieves a True Positive Ratio (TPR) up to 100% and an average False Positive Ratio (FPR) of 35%. The comparative analysis shows that PREVIR's efficiency is 20% better on average in the prevention of malicious packets as compared to the state-of-the-art models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3382992</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; attack ; Computer crime ; Cybersecurity ; Datasets ; DDoS ; Denial of service attacks ; Denial-of-service attack ; Floods ; Internet of Things ; Logistic regression ; Logit models ; Machine learning ; Networks ; prevention ; Probabilistic analysis ; Risk assessment ; Security ; Statistical analysis ; VANETs ; Vehicles ; Vehicular ; Vehicular ad hoc networks</subject><ispartof>IEEE access, 2024, Vol.12, p.48301-48320</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-e4951dd22b8227bb563c08818f0bd92feb3b29d3d52b37689400fd217f5bb8023</cites><orcidid>0000-0002-3612-1934 ; 0000-0003-0117-8102 ; 0000-0003-0026-149X ; 0000-0003-3921-9512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10485425$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Verma, Amandeep</creatorcontrib><creatorcontrib>Saha, Rahul</creatorcontrib><creatorcontrib>Kumar, Gulshan</creatorcontrib><creatorcontrib>Conti, Mauro</creatorcontrib><creatorcontrib>Kim, Tai-Hoon</creatorcontrib><title>PREVIR: Fortifying Vehicular Networks Against Denial of Service Attacks</title><title>IEEE access</title><addtitle>Access</addtitle><description>Vehicular networks are expanding their applications for future sustainability. The reported increasing rate of data breaches through vehicular networks by Distributed Denial of Service (DDoS) type of intrusion creates concern for such networks. Existing security solutions focus only on intrusion detection. However, prevention solutions are more proactive and provide security by probabilistic analysis. Existing prevention models for vehicular networks have low accuracy and are unable to handle zero-day attacks and advanced persistent threats. In this paper, we solve the problems mentioned above and introduce Predictive Risk Evaluation for Vehicular Infrastructure Resilience (PREVIR), the first amalgamated model of logit method (statistical analysis) and LogitBoost method (machine learning) to prevent DDoS attacks in vehicular networks. In PREVIR, the logit model predicts the packet probabilities for identifying maliciousness. The machine learning method improves PREVIR's performance through iterative refinement of the model's periodic updates based on new traffic parameters. We run a set of experiments on PREVIR. We use our NS3-generated dataset, NSL-KDD public dataset, and CIC-DDoS public dataset. PREVIR analyses multiple attack types, including UDP flood, TCP flood, mixed flooding, U2R, Probe, and R2L attacks. The results show that PREVIR classifies packets with accuracy up to 99.99%. Our proposed PREVIR model achieves a True Positive Ratio (TPR) up to 100% and an average False Positive Ratio (FPR) of 35%. The comparative analysis shows that PREVIR's efficiency is 20% better on average in the prevention of malicious packets as compared to the state-of-the-art models.</description><subject>Accuracy</subject><subject>attack</subject><subject>Computer crime</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>DDoS</subject><subject>Denial of service attacks</subject><subject>Denial-of-service attack</subject><subject>Floods</subject><subject>Internet of Things</subject><subject>Logistic regression</subject><subject>Logit models</subject><subject>Machine learning</subject><subject>Networks</subject><subject>prevention</subject><subject>Probabilistic analysis</subject><subject>Risk assessment</subject><subject>Security</subject><subject>Statistical analysis</subject><subject>VANETs</subject><subject>Vehicles</subject><subject>Vehicular</subject><subject>Vehicular ad hoc networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX-BHhY8t-ZzN_G21FYLRcVqryHZTGpq3dRkq_jvXV2RzmWGx7z3ZnhZdobREGMkL6vRaDyfDwkibEipIFKSveyI4EIOKKfF_s58mJ2mtEJdiQ7i5VF28_A4Xkwfr_JJiK13X75Z5gt48fV2rWN-B-1niK8pr5baN6nNr6Hxep0Hl88hfvga8qptdf2aTrIDp9cJTv_6cfY8GT-Nbgez-5vpqJoNasplOwAmObaWECMIKY3hBa2REFg4ZKwkDgw1RFpqOTG0LIRkCDlLcOm4MQIRepxNe10b9Epton_T8UsF7dUvEOJS6e6Reg0KMQOOC4slcGYok1ZbWTsCrGBYa9FpXfRamxjet5BatQrb2HTnK4ooLXBnX3RbtN-qY0gpgvt3xUj9BKD6ANRPAOovgI513rM8AOwwmOCMcPoNP7F_7g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Verma, Amandeep</creator><creator>Saha, Rahul</creator><creator>Kumar, Gulshan</creator><creator>Conti, Mauro</creator><creator>Kim, Tai-Hoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3612-1934</orcidid><orcidid>https://orcid.org/0000-0003-0117-8102</orcidid><orcidid>https://orcid.org/0000-0003-0026-149X</orcidid><orcidid>https://orcid.org/0000-0003-3921-9512</orcidid></search><sort><creationdate>2024</creationdate><title>PREVIR: Fortifying Vehicular Networks Against Denial of Service Attacks</title><author>Verma, Amandeep ; Saha, Rahul ; Kumar, Gulshan ; Conti, Mauro ; Kim, Tai-Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e4951dd22b8227bb563c08818f0bd92feb3b29d3d52b37689400fd217f5bb8023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>attack</topic><topic>Computer crime</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>DDoS</topic><topic>Denial of service attacks</topic><topic>Denial-of-service attack</topic><topic>Floods</topic><topic>Internet of Things</topic><topic>Logistic regression</topic><topic>Logit models</topic><topic>Machine learning</topic><topic>Networks</topic><topic>prevention</topic><topic>Probabilistic analysis</topic><topic>Risk assessment</topic><topic>Security</topic><topic>Statistical analysis</topic><topic>VANETs</topic><topic>Vehicles</topic><topic>Vehicular</topic><topic>Vehicular ad hoc networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Amandeep</creatorcontrib><creatorcontrib>Saha, Rahul</creatorcontrib><creatorcontrib>Kumar, Gulshan</creatorcontrib><creatorcontrib>Conti, Mauro</creatorcontrib><creatorcontrib>Kim, Tai-Hoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Amandeep</au><au>Saha, Rahul</au><au>Kumar, Gulshan</au><au>Conti, Mauro</au><au>Kim, Tai-Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PREVIR: Fortifying Vehicular Networks Against Denial of Service Attacks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>48301</spage><epage>48320</epage><pages>48301-48320</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Vehicular networks are expanding their applications for future sustainability. The reported increasing rate of data breaches through vehicular networks by Distributed Denial of Service (DDoS) type of intrusion creates concern for such networks. Existing security solutions focus only on intrusion detection. However, prevention solutions are more proactive and provide security by probabilistic analysis. Existing prevention models for vehicular networks have low accuracy and are unable to handle zero-day attacks and advanced persistent threats. In this paper, we solve the problems mentioned above and introduce Predictive Risk Evaluation for Vehicular Infrastructure Resilience (PREVIR), the first amalgamated model of logit method (statistical analysis) and LogitBoost method (machine learning) to prevent DDoS attacks in vehicular networks. In PREVIR, the logit model predicts the packet probabilities for identifying maliciousness. The machine learning method improves PREVIR's performance through iterative refinement of the model's periodic updates based on new traffic parameters. We run a set of experiments on PREVIR. We use our NS3-generated dataset, NSL-KDD public dataset, and CIC-DDoS public dataset. PREVIR analyses multiple attack types, including UDP flood, TCP flood, mixed flooding, U2R, Probe, and R2L attacks. The results show that PREVIR classifies packets with accuracy up to 99.99%. Our proposed PREVIR model achieves a True Positive Ratio (TPR) up to 100% and an average False Positive Ratio (FPR) of 35%. The comparative analysis shows that PREVIR's efficiency is 20% better on average in the prevention of malicious packets as compared to the state-of-the-art models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3382992</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3612-1934</orcidid><orcidid>https://orcid.org/0000-0003-0117-8102</orcidid><orcidid>https://orcid.org/0000-0003-0026-149X</orcidid><orcidid>https://orcid.org/0000-0003-3921-9512</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.48301-48320 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3382992 |
source | IEEE Xplore Open Access Journals |
subjects | Accuracy attack Computer crime Cybersecurity Datasets DDoS Denial of service attacks Denial-of-service attack Floods Internet of Things Logistic regression Logit models Machine learning Networks prevention Probabilistic analysis Risk assessment Security Statistical analysis VANETs Vehicles Vehicular Vehicular ad hoc networks |
title | PREVIR: Fortifying Vehicular Networks Against Denial of Service Attacks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PREVIR:%20Fortifying%20Vehicular%20Networks%20Against%20Denial%20of%20Service%20Attacks&rft.jtitle=IEEE%20access&rft.au=Verma,%20Amandeep&rft.date=2024&rft.volume=12&rft.spage=48301&rft.epage=48320&rft.pages=48301-48320&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3382992&rft_dat=%3Cproquest_cross%3E3033618946%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-e4951dd22b8227bb563c08818f0bd92feb3b29d3d52b37689400fd217f5bb8023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3033618946&rft_id=info:pmid/&rft_ieee_id=10485425&rfr_iscdi=true |