Loading…

PREVIR: Fortifying Vehicular Networks Against Denial of Service Attacks

Vehicular networks are expanding their applications for future sustainability. The reported increasing rate of data breaches through vehicular networks by Distributed Denial of Service (DDoS) type of intrusion creates concern for such networks. Existing security solutions focus only on intrusion det...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.48301-48320
Main Authors: Verma, Amandeep, Saha, Rahul, Kumar, Gulshan, Conti, Mauro, Kim, Tai-Hoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-e4951dd22b8227bb563c08818f0bd92feb3b29d3d52b37689400fd217f5bb8023
container_end_page 48320
container_issue
container_start_page 48301
container_title IEEE access
container_volume 12
creator Verma, Amandeep
Saha, Rahul
Kumar, Gulshan
Conti, Mauro
Kim, Tai-Hoon
description Vehicular networks are expanding their applications for future sustainability. The reported increasing rate of data breaches through vehicular networks by Distributed Denial of Service (DDoS) type of intrusion creates concern for such networks. Existing security solutions focus only on intrusion detection. However, prevention solutions are more proactive and provide security by probabilistic analysis. Existing prevention models for vehicular networks have low accuracy and are unable to handle zero-day attacks and advanced persistent threats. In this paper, we solve the problems mentioned above and introduce Predictive Risk Evaluation for Vehicular Infrastructure Resilience (PREVIR), the first amalgamated model of logit method (statistical analysis) and LogitBoost method (machine learning) to prevent DDoS attacks in vehicular networks. In PREVIR, the logit model predicts the packet probabilities for identifying maliciousness. The machine learning method improves PREVIR's performance through iterative refinement of the model's periodic updates based on new traffic parameters. We run a set of experiments on PREVIR. We use our NS3-generated dataset, NSL-KDD public dataset, and CIC-DDoS public dataset. PREVIR analyses multiple attack types, including UDP flood, TCP flood, mixed flooding, U2R, Probe, and R2L attacks. The results show that PREVIR classifies packets with accuracy up to 99.99%. Our proposed PREVIR model achieves a True Positive Ratio (TPR) up to 100% and an average False Positive Ratio (FPR) of 35%. The comparative analysis shows that PREVIR's efficiency is 20% better on average in the prevention of malicious packets as compared to the state-of-the-art models.
doi_str_mv 10.1109/ACCESS.2024.3382992
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3382992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10485425</ieee_id><doaj_id>oai_doaj_org_article_04bef58d19e54b349dad9cf2e4641aa8</doaj_id><sourcerecordid>3033618946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e4951dd22b8227bb563c08818f0bd92feb3b29d3d52b37689400fd217f5bb8023</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUX-BHhY8t-ZzN_G21FYLRcVqryHZTGpq3dRkq_jvXV2RzmWGx7z3ZnhZdobREGMkL6vRaDyfDwkibEipIFKSveyI4EIOKKfF_s58mJ2mtEJdiQ7i5VF28_A4Xkwfr_JJiK13X75Z5gt48fV2rWN-B-1niK8pr5baN6nNr6Hxep0Hl88hfvga8qptdf2aTrIDp9cJTv_6cfY8GT-Nbgez-5vpqJoNasplOwAmObaWECMIKY3hBa2REFg4ZKwkDgw1RFpqOTG0LIRkCDlLcOm4MQIRepxNe10b9Epton_T8UsF7dUvEOJS6e6Reg0KMQOOC4slcGYok1ZbWTsCrGBYa9FpXfRamxjet5BatQrb2HTnK4ooLXBnX3RbtN-qY0gpgvt3xUj9BKD6ANRPAOovgI513rM8AOwwmOCMcPoNP7F_7g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3033618946</pqid></control><display><type>article</type><title>PREVIR: Fortifying Vehicular Networks Against Denial of Service Attacks</title><source>IEEE Xplore Open Access Journals</source><creator>Verma, Amandeep ; Saha, Rahul ; Kumar, Gulshan ; Conti, Mauro ; Kim, Tai-Hoon</creator><creatorcontrib>Verma, Amandeep ; Saha, Rahul ; Kumar, Gulshan ; Conti, Mauro ; Kim, Tai-Hoon</creatorcontrib><description>Vehicular networks are expanding their applications for future sustainability. The reported increasing rate of data breaches through vehicular networks by Distributed Denial of Service (DDoS) type of intrusion creates concern for such networks. Existing security solutions focus only on intrusion detection. However, prevention solutions are more proactive and provide security by probabilistic analysis. Existing prevention models for vehicular networks have low accuracy and are unable to handle zero-day attacks and advanced persistent threats. In this paper, we solve the problems mentioned above and introduce Predictive Risk Evaluation for Vehicular Infrastructure Resilience (PREVIR), the first amalgamated model of logit method (statistical analysis) and LogitBoost method (machine learning) to prevent DDoS attacks in vehicular networks. In PREVIR, the logit model predicts the packet probabilities for identifying maliciousness. The machine learning method improves PREVIR's performance through iterative refinement of the model's periodic updates based on new traffic parameters. We run a set of experiments on PREVIR. We use our NS3-generated dataset, NSL-KDD public dataset, and CIC-DDoS public dataset. PREVIR analyses multiple attack types, including UDP flood, TCP flood, mixed flooding, U2R, Probe, and R2L attacks. The results show that PREVIR classifies packets with accuracy up to 99.99%. Our proposed PREVIR model achieves a True Positive Ratio (TPR) up to 100% and an average False Positive Ratio (FPR) of 35%. The comparative analysis shows that PREVIR's efficiency is 20% better on average in the prevention of malicious packets as compared to the state-of-the-art models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3382992</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; attack ; Computer crime ; Cybersecurity ; Datasets ; DDoS ; Denial of service attacks ; Denial-of-service attack ; Floods ; Internet of Things ; Logistic regression ; Logit models ; Machine learning ; Networks ; prevention ; Probabilistic analysis ; Risk assessment ; Security ; Statistical analysis ; VANETs ; Vehicles ; Vehicular ; Vehicular ad hoc networks</subject><ispartof>IEEE access, 2024, Vol.12, p.48301-48320</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-e4951dd22b8227bb563c08818f0bd92feb3b29d3d52b37689400fd217f5bb8023</cites><orcidid>0000-0002-3612-1934 ; 0000-0003-0117-8102 ; 0000-0003-0026-149X ; 0000-0003-3921-9512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10485425$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Verma, Amandeep</creatorcontrib><creatorcontrib>Saha, Rahul</creatorcontrib><creatorcontrib>Kumar, Gulshan</creatorcontrib><creatorcontrib>Conti, Mauro</creatorcontrib><creatorcontrib>Kim, Tai-Hoon</creatorcontrib><title>PREVIR: Fortifying Vehicular Networks Against Denial of Service Attacks</title><title>IEEE access</title><addtitle>Access</addtitle><description>Vehicular networks are expanding their applications for future sustainability. The reported increasing rate of data breaches through vehicular networks by Distributed Denial of Service (DDoS) type of intrusion creates concern for such networks. Existing security solutions focus only on intrusion detection. However, prevention solutions are more proactive and provide security by probabilistic analysis. Existing prevention models for vehicular networks have low accuracy and are unable to handle zero-day attacks and advanced persistent threats. In this paper, we solve the problems mentioned above and introduce Predictive Risk Evaluation for Vehicular Infrastructure Resilience (PREVIR), the first amalgamated model of logit method (statistical analysis) and LogitBoost method (machine learning) to prevent DDoS attacks in vehicular networks. In PREVIR, the logit model predicts the packet probabilities for identifying maliciousness. The machine learning method improves PREVIR's performance through iterative refinement of the model's periodic updates based on new traffic parameters. We run a set of experiments on PREVIR. We use our NS3-generated dataset, NSL-KDD public dataset, and CIC-DDoS public dataset. PREVIR analyses multiple attack types, including UDP flood, TCP flood, mixed flooding, U2R, Probe, and R2L attacks. The results show that PREVIR classifies packets with accuracy up to 99.99%. Our proposed PREVIR model achieves a True Positive Ratio (TPR) up to 100% and an average False Positive Ratio (FPR) of 35%. The comparative analysis shows that PREVIR's efficiency is 20% better on average in the prevention of malicious packets as compared to the state-of-the-art models.</description><subject>Accuracy</subject><subject>attack</subject><subject>Computer crime</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>DDoS</subject><subject>Denial of service attacks</subject><subject>Denial-of-service attack</subject><subject>Floods</subject><subject>Internet of Things</subject><subject>Logistic regression</subject><subject>Logit models</subject><subject>Machine learning</subject><subject>Networks</subject><subject>prevention</subject><subject>Probabilistic analysis</subject><subject>Risk assessment</subject><subject>Security</subject><subject>Statistical analysis</subject><subject>VANETs</subject><subject>Vehicles</subject><subject>Vehicular</subject><subject>Vehicular ad hoc networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUX-BHhY8t-ZzN_G21FYLRcVqryHZTGpq3dRkq_jvXV2RzmWGx7z3ZnhZdobREGMkL6vRaDyfDwkibEipIFKSveyI4EIOKKfF_s58mJ2mtEJdiQ7i5VF28_A4Xkwfr_JJiK13X75Z5gt48fV2rWN-B-1niK8pr5baN6nNr6Hxep0Hl88hfvga8qptdf2aTrIDp9cJTv_6cfY8GT-Nbgez-5vpqJoNasplOwAmObaWECMIKY3hBa2REFg4ZKwkDgw1RFpqOTG0LIRkCDlLcOm4MQIRepxNe10b9Epton_T8UsF7dUvEOJS6e6Reg0KMQOOC4slcGYok1ZbWTsCrGBYa9FpXfRamxjet5BatQrb2HTnK4ooLXBnX3RbtN-qY0gpgvt3xUj9BKD6ANRPAOovgI513rM8AOwwmOCMcPoNP7F_7g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Verma, Amandeep</creator><creator>Saha, Rahul</creator><creator>Kumar, Gulshan</creator><creator>Conti, Mauro</creator><creator>Kim, Tai-Hoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3612-1934</orcidid><orcidid>https://orcid.org/0000-0003-0117-8102</orcidid><orcidid>https://orcid.org/0000-0003-0026-149X</orcidid><orcidid>https://orcid.org/0000-0003-3921-9512</orcidid></search><sort><creationdate>2024</creationdate><title>PREVIR: Fortifying Vehicular Networks Against Denial of Service Attacks</title><author>Verma, Amandeep ; Saha, Rahul ; Kumar, Gulshan ; Conti, Mauro ; Kim, Tai-Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e4951dd22b8227bb563c08818f0bd92feb3b29d3d52b37689400fd217f5bb8023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>attack</topic><topic>Computer crime</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>DDoS</topic><topic>Denial of service attacks</topic><topic>Denial-of-service attack</topic><topic>Floods</topic><topic>Internet of Things</topic><topic>Logistic regression</topic><topic>Logit models</topic><topic>Machine learning</topic><topic>Networks</topic><topic>prevention</topic><topic>Probabilistic analysis</topic><topic>Risk assessment</topic><topic>Security</topic><topic>Statistical analysis</topic><topic>VANETs</topic><topic>Vehicles</topic><topic>Vehicular</topic><topic>Vehicular ad hoc networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Amandeep</creatorcontrib><creatorcontrib>Saha, Rahul</creatorcontrib><creatorcontrib>Kumar, Gulshan</creatorcontrib><creatorcontrib>Conti, Mauro</creatorcontrib><creatorcontrib>Kim, Tai-Hoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Amandeep</au><au>Saha, Rahul</au><au>Kumar, Gulshan</au><au>Conti, Mauro</au><au>Kim, Tai-Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PREVIR: Fortifying Vehicular Networks Against Denial of Service Attacks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>48301</spage><epage>48320</epage><pages>48301-48320</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Vehicular networks are expanding their applications for future sustainability. The reported increasing rate of data breaches through vehicular networks by Distributed Denial of Service (DDoS) type of intrusion creates concern for such networks. Existing security solutions focus only on intrusion detection. However, prevention solutions are more proactive and provide security by probabilistic analysis. Existing prevention models for vehicular networks have low accuracy and are unable to handle zero-day attacks and advanced persistent threats. In this paper, we solve the problems mentioned above and introduce Predictive Risk Evaluation for Vehicular Infrastructure Resilience (PREVIR), the first amalgamated model of logit method (statistical analysis) and LogitBoost method (machine learning) to prevent DDoS attacks in vehicular networks. In PREVIR, the logit model predicts the packet probabilities for identifying maliciousness. The machine learning method improves PREVIR's performance through iterative refinement of the model's periodic updates based on new traffic parameters. We run a set of experiments on PREVIR. We use our NS3-generated dataset, NSL-KDD public dataset, and CIC-DDoS public dataset. PREVIR analyses multiple attack types, including UDP flood, TCP flood, mixed flooding, U2R, Probe, and R2L attacks. The results show that PREVIR classifies packets with accuracy up to 99.99%. Our proposed PREVIR model achieves a True Positive Ratio (TPR) up to 100% and an average False Positive Ratio (FPR) of 35%. The comparative analysis shows that PREVIR's efficiency is 20% better on average in the prevention of malicious packets as compared to the state-of-the-art models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3382992</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3612-1934</orcidid><orcidid>https://orcid.org/0000-0003-0117-8102</orcidid><orcidid>https://orcid.org/0000-0003-0026-149X</orcidid><orcidid>https://orcid.org/0000-0003-3921-9512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.48301-48320
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3382992
source IEEE Xplore Open Access Journals
subjects Accuracy
attack
Computer crime
Cybersecurity
Datasets
DDoS
Denial of service attacks
Denial-of-service attack
Floods
Internet of Things
Logistic regression
Logit models
Machine learning
Networks
prevention
Probabilistic analysis
Risk assessment
Security
Statistical analysis
VANETs
Vehicles
Vehicular
Vehicular ad hoc networks
title PREVIR: Fortifying Vehicular Networks Against Denial of Service Attacks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PREVIR:%20Fortifying%20Vehicular%20Networks%20Against%20Denial%20of%20Service%20Attacks&rft.jtitle=IEEE%20access&rft.au=Verma,%20Amandeep&rft.date=2024&rft.volume=12&rft.spage=48301&rft.epage=48320&rft.pages=48301-48320&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3382992&rft_dat=%3Cproquest_cross%3E3033618946%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-e4951dd22b8227bb563c08818f0bd92feb3b29d3d52b37689400fd217f5bb8023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3033618946&rft_id=info:pmid/&rft_ieee_id=10485425&rfr_iscdi=true