Loading…
SignboardText: Text Detection and Recognition in In-the-Wild Signboard Images
Scene text detection and recognition have attracted much attention in recent years because of their potential applications. Detecting and recognizing texts in images may suffer from scene complexity and text variations. Some of these problematic cases are included in popular benchmark datasets, but...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.62942-62957 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-98d7de324ba5566bede4369912017e9556a4d5b47cbed4665c5582d1df53e7783 |
container_end_page | 62957 |
container_issue | |
container_start_page | 62942 |
container_title | IEEE access |
container_volume | 12 |
creator | do, Tien Tran, Thuyen Nguyen, Thua Le, Duy-Dinh Ngo, Thanh Duc |
description | Scene text detection and recognition have attracted much attention in recent years because of their potential applications. Detecting and recognizing texts in images may suffer from scene complexity and text variations. Some of these problematic cases are included in popular benchmark datasets, but only to a limited extent. In this work, we investigate the problem of scene text detection and recognition in a domain with extreme challenges. We focus on in-the-wild signboard images in which text commonly appears in different fonts, sizes, artistic styles, or languages with cluttered backgrounds. We first contribute an in-the-wild signboard dataset with 79K text instances on both line-level and word-level across 2,104 scene images. We then comprehensively evaluated recent state-of-the-art (SOTA) approaches for text detection and recognition on the dataset. By doing this, we expect to realize the barriers of current state-of-the-art approaches to solving the extremely challenging issues of scene text detection and recognition, as well as their applicability in this domain. Code and dataset are available at https://github.com/aiclub-uit/SignboardText/ and IEEE DataPort. |
doi_str_mv | 10.1109/ACCESS.2024.3395374 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3395374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10510446</ieee_id><doaj_id>oai_doaj_org_article_a2e829e79e0f47528b766f37a641c561</doaj_id><sourcerecordid>3052194869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-98d7de324ba5566bede4369912017e9556a4d5b47cbed4665c5582d1df53e7783</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgqf0Fegh4Tt3vzXortWqgItiKx2WTncQtbbZuUtB_b9qU0j3MzryZ92bgRdEtRmOMkXqYTKezxWJMEGFjShWnkl1EA4KFSiin4vIsv45GTbNC3Us7iMtB9LZwVZ17E-wSftvHeB_jJ2ihaJ2vY1Pb-AMKX9XuULs6zuqk_Ybky61tfCLH2cZU0NxEV6VZNzA6_sPo83m2nL4m8_eXbDqZJwXlqk1UaqUFSlhuOBciBwuMCqUwQViC6jDDLM-ZLLoWE4IXnKfEYltyClKmdBhlva71ZqW3wW1M-NPeOH0AfKi0Ca0r1qANgZQokApQySQnaS6FKKk0guGCC9xp3fda2-B_dtC0euV3oe7O1xRxghVLheqmaD9VBN80AcrTVoz03gbd26D3NuijDR3rrmc5ADhjcIwYE_Qf0SSBjw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052194869</pqid></control><display><type>article</type><title>SignboardText: Text Detection and Recognition in In-the-Wild Signboard Images</title><source>IEEE Xplore Open Access Journals</source><creator>do, Tien ; Tran, Thuyen ; Nguyen, Thua ; Le, Duy-Dinh ; Ngo, Thanh Duc</creator><creatorcontrib>do, Tien ; Tran, Thuyen ; Nguyen, Thua ; Le, Duy-Dinh ; Ngo, Thanh Duc</creatorcontrib><description>Scene text detection and recognition have attracted much attention in recent years because of their potential applications. Detecting and recognizing texts in images may suffer from scene complexity and text variations. Some of these problematic cases are included in popular benchmark datasets, but only to a limited extent. In this work, we investigate the problem of scene text detection and recognition in a domain with extreme challenges. We focus on in-the-wild signboard images in which text commonly appears in different fonts, sizes, artistic styles, or languages with cluttered backgrounds. We first contribute an in-the-wild signboard dataset with 79K text instances on both line-level and word-level across 2,104 scene images. We then comprehensively evaluated recent state-of-the-art (SOTA) approaches for text detection and recognition on the dataset. By doing this, we expect to realize the barriers of current state-of-the-art approaches to solving the extremely challenging issues of scene text detection and recognition, as well as their applicability in this domain. Code and dataset are available at https://github.com/aiclub-uit/SignboardText/ and IEEE DataPort.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3395374</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data models ; Datasets ; Image analysis ; scene text detection ; scene text recognition ; Signboard images ; State-of-the-art reviews ; Text detection ; Text recognition</subject><ispartof>IEEE access, 2024, Vol.12, p.62942-62957</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-98d7de324ba5566bede4369912017e9556a4d5b47cbed4665c5582d1df53e7783</cites><orcidid>0000-0003-0356-5501 ; 0000-0001-6882-0070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10510446$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,4012,27620,27910,27911,27912,54920</link.rule.ids></links><search><creatorcontrib>do, Tien</creatorcontrib><creatorcontrib>Tran, Thuyen</creatorcontrib><creatorcontrib>Nguyen, Thua</creatorcontrib><creatorcontrib>Le, Duy-Dinh</creatorcontrib><creatorcontrib>Ngo, Thanh Duc</creatorcontrib><title>SignboardText: Text Detection and Recognition in In-the-Wild Signboard Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>Scene text detection and recognition have attracted much attention in recent years because of their potential applications. Detecting and recognizing texts in images may suffer from scene complexity and text variations. Some of these problematic cases are included in popular benchmark datasets, but only to a limited extent. In this work, we investigate the problem of scene text detection and recognition in a domain with extreme challenges. We focus on in-the-wild signboard images in which text commonly appears in different fonts, sizes, artistic styles, or languages with cluttered backgrounds. We first contribute an in-the-wild signboard dataset with 79K text instances on both line-level and word-level across 2,104 scene images. We then comprehensively evaluated recent state-of-the-art (SOTA) approaches for text detection and recognition on the dataset. By doing this, we expect to realize the barriers of current state-of-the-art approaches to solving the extremely challenging issues of scene text detection and recognition, as well as their applicability in this domain. Code and dataset are available at https://github.com/aiclub-uit/SignboardText/ and IEEE DataPort.</description><subject>Data models</subject><subject>Datasets</subject><subject>Image analysis</subject><subject>scene text detection</subject><subject>scene text recognition</subject><subject>Signboard images</subject><subject>State-of-the-art reviews</subject><subject>Text detection</subject><subject>Text recognition</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgqf0Fegh4Tt3vzXortWqgItiKx2WTncQtbbZuUtB_b9qU0j3MzryZ92bgRdEtRmOMkXqYTKezxWJMEGFjShWnkl1EA4KFSiin4vIsv45GTbNC3Us7iMtB9LZwVZ17E-wSftvHeB_jJ2ihaJ2vY1Pb-AMKX9XuULs6zuqk_Ybky61tfCLH2cZU0NxEV6VZNzA6_sPo83m2nL4m8_eXbDqZJwXlqk1UaqUFSlhuOBciBwuMCqUwQViC6jDDLM-ZLLoWE4IXnKfEYltyClKmdBhlva71ZqW3wW1M-NPeOH0AfKi0Ca0r1qANgZQokApQySQnaS6FKKk0guGCC9xp3fda2-B_dtC0euV3oe7O1xRxghVLheqmaD9VBN80AcrTVoz03gbd26D3NuijDR3rrmc5ADhjcIwYE_Qf0SSBjw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>do, Tien</creator><creator>Tran, Thuyen</creator><creator>Nguyen, Thua</creator><creator>Le, Duy-Dinh</creator><creator>Ngo, Thanh Duc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0356-5501</orcidid><orcidid>https://orcid.org/0000-0001-6882-0070</orcidid></search><sort><creationdate>2024</creationdate><title>SignboardText: Text Detection and Recognition in In-the-Wild Signboard Images</title><author>do, Tien ; Tran, Thuyen ; Nguyen, Thua ; Le, Duy-Dinh ; Ngo, Thanh Duc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-98d7de324ba5566bede4369912017e9556a4d5b47cbed4665c5582d1df53e7783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data models</topic><topic>Datasets</topic><topic>Image analysis</topic><topic>scene text detection</topic><topic>scene text recognition</topic><topic>Signboard images</topic><topic>State-of-the-art reviews</topic><topic>Text detection</topic><topic>Text recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>do, Tien</creatorcontrib><creatorcontrib>Tran, Thuyen</creatorcontrib><creatorcontrib>Nguyen, Thua</creatorcontrib><creatorcontrib>Le, Duy-Dinh</creatorcontrib><creatorcontrib>Ngo, Thanh Duc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>do, Tien</au><au>Tran, Thuyen</au><au>Nguyen, Thua</au><au>Le, Duy-Dinh</au><au>Ngo, Thanh Duc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SignboardText: Text Detection and Recognition in In-the-Wild Signboard Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>62942</spage><epage>62957</epage><pages>62942-62957</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Scene text detection and recognition have attracted much attention in recent years because of their potential applications. Detecting and recognizing texts in images may suffer from scene complexity and text variations. Some of these problematic cases are included in popular benchmark datasets, but only to a limited extent. In this work, we investigate the problem of scene text detection and recognition in a domain with extreme challenges. We focus on in-the-wild signboard images in which text commonly appears in different fonts, sizes, artistic styles, or languages with cluttered backgrounds. We first contribute an in-the-wild signboard dataset with 79K text instances on both line-level and word-level across 2,104 scene images. We then comprehensively evaluated recent state-of-the-art (SOTA) approaches for text detection and recognition on the dataset. By doing this, we expect to realize the barriers of current state-of-the-art approaches to solving the extremely challenging issues of scene text detection and recognition, as well as their applicability in this domain. Code and dataset are available at https://github.com/aiclub-uit/SignboardText/ and IEEE DataPort.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3395374</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0356-5501</orcidid><orcidid>https://orcid.org/0000-0001-6882-0070</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.62942-62957 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3395374 |
source | IEEE Xplore Open Access Journals |
subjects | Data models Datasets Image analysis scene text detection scene text recognition Signboard images State-of-the-art reviews Text detection Text recognition |
title | SignboardText: Text Detection and Recognition in In-the-Wild Signboard Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SignboardText:%20Text%20Detection%20and%20Recognition%20in%20In-the-Wild%20Signboard%20Images&rft.jtitle=IEEE%20access&rft.au=do,%20Tien&rft.date=2024&rft.volume=12&rft.spage=62942&rft.epage=62957&rft.pages=62942-62957&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3395374&rft_dat=%3Cproquest_cross%3E3052194869%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-98d7de324ba5566bede4369912017e9556a4d5b47cbed4665c5582d1df53e7783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3052194869&rft_id=info:pmid/&rft_ieee_id=10510446&rfr_iscdi=true |