Loading…

SignboardText: Text Detection and Recognition in In-the-Wild Signboard Images

Scene text detection and recognition have attracted much attention in recent years because of their potential applications. Detecting and recognizing texts in images may suffer from scene complexity and text variations. Some of these problematic cases are included in popular benchmark datasets, but...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.62942-62957
Main Authors: do, Tien, Tran, Thuyen, Nguyen, Thua, Le, Duy-Dinh, Ngo, Thanh Duc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-98d7de324ba5566bede4369912017e9556a4d5b47cbed4665c5582d1df53e7783
container_end_page 62957
container_issue
container_start_page 62942
container_title IEEE access
container_volume 12
creator do, Tien
Tran, Thuyen
Nguyen, Thua
Le, Duy-Dinh
Ngo, Thanh Duc
description Scene text detection and recognition have attracted much attention in recent years because of their potential applications. Detecting and recognizing texts in images may suffer from scene complexity and text variations. Some of these problematic cases are included in popular benchmark datasets, but only to a limited extent. In this work, we investigate the problem of scene text detection and recognition in a domain with extreme challenges. We focus on in-the-wild signboard images in which text commonly appears in different fonts, sizes, artistic styles, or languages with cluttered backgrounds. We first contribute an in-the-wild signboard dataset with 79K text instances on both line-level and word-level across 2,104 scene images. We then comprehensively evaluated recent state-of-the-art (SOTA) approaches for text detection and recognition on the dataset. By doing this, we expect to realize the barriers of current state-of-the-art approaches to solving the extremely challenging issues of scene text detection and recognition, as well as their applicability in this domain. Code and dataset are available at https://github.com/aiclub-uit/SignboardText/ and IEEE DataPort.
doi_str_mv 10.1109/ACCESS.2024.3395374
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3395374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10510446</ieee_id><doaj_id>oai_doaj_org_article_a2e829e79e0f47528b766f37a641c561</doaj_id><sourcerecordid>3052194869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-98d7de324ba5566bede4369912017e9556a4d5b47cbed4665c5582d1df53e7783</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgqf0Fegh4Tt3vzXortWqgItiKx2WTncQtbbZuUtB_b9qU0j3MzryZ92bgRdEtRmOMkXqYTKezxWJMEGFjShWnkl1EA4KFSiin4vIsv45GTbNC3Us7iMtB9LZwVZ17E-wSftvHeB_jJ2ihaJ2vY1Pb-AMKX9XuULs6zuqk_Ybky61tfCLH2cZU0NxEV6VZNzA6_sPo83m2nL4m8_eXbDqZJwXlqk1UaqUFSlhuOBciBwuMCqUwQViC6jDDLM-ZLLoWE4IXnKfEYltyClKmdBhlva71ZqW3wW1M-NPeOH0AfKi0Ca0r1qANgZQokApQySQnaS6FKKk0guGCC9xp3fda2-B_dtC0euV3oe7O1xRxghVLheqmaD9VBN80AcrTVoz03gbd26D3NuijDR3rrmc5ADhjcIwYE_Qf0SSBjw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052194869</pqid></control><display><type>article</type><title>SignboardText: Text Detection and Recognition in In-the-Wild Signboard Images</title><source>IEEE Xplore Open Access Journals</source><creator>do, Tien ; Tran, Thuyen ; Nguyen, Thua ; Le, Duy-Dinh ; Ngo, Thanh Duc</creator><creatorcontrib>do, Tien ; Tran, Thuyen ; Nguyen, Thua ; Le, Duy-Dinh ; Ngo, Thanh Duc</creatorcontrib><description>Scene text detection and recognition have attracted much attention in recent years because of their potential applications. Detecting and recognizing texts in images may suffer from scene complexity and text variations. Some of these problematic cases are included in popular benchmark datasets, but only to a limited extent. In this work, we investigate the problem of scene text detection and recognition in a domain with extreme challenges. We focus on in-the-wild signboard images in which text commonly appears in different fonts, sizes, artistic styles, or languages with cluttered backgrounds. We first contribute an in-the-wild signboard dataset with 79K text instances on both line-level and word-level across 2,104 scene images. We then comprehensively evaluated recent state-of-the-art (SOTA) approaches for text detection and recognition on the dataset. By doing this, we expect to realize the barriers of current state-of-the-art approaches to solving the extremely challenging issues of scene text detection and recognition, as well as their applicability in this domain. Code and dataset are available at https://github.com/aiclub-uit/SignboardText/ and IEEE DataPort.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3395374</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data models ; Datasets ; Image analysis ; scene text detection ; scene text recognition ; Signboard images ; State-of-the-art reviews ; Text detection ; Text recognition</subject><ispartof>IEEE access, 2024, Vol.12, p.62942-62957</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-98d7de324ba5566bede4369912017e9556a4d5b47cbed4665c5582d1df53e7783</cites><orcidid>0000-0003-0356-5501 ; 0000-0001-6882-0070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10510446$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,4012,27620,27910,27911,27912,54920</link.rule.ids></links><search><creatorcontrib>do, Tien</creatorcontrib><creatorcontrib>Tran, Thuyen</creatorcontrib><creatorcontrib>Nguyen, Thua</creatorcontrib><creatorcontrib>Le, Duy-Dinh</creatorcontrib><creatorcontrib>Ngo, Thanh Duc</creatorcontrib><title>SignboardText: Text Detection and Recognition in In-the-Wild Signboard Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>Scene text detection and recognition have attracted much attention in recent years because of their potential applications. Detecting and recognizing texts in images may suffer from scene complexity and text variations. Some of these problematic cases are included in popular benchmark datasets, but only to a limited extent. In this work, we investigate the problem of scene text detection and recognition in a domain with extreme challenges. We focus on in-the-wild signboard images in which text commonly appears in different fonts, sizes, artistic styles, or languages with cluttered backgrounds. We first contribute an in-the-wild signboard dataset with 79K text instances on both line-level and word-level across 2,104 scene images. We then comprehensively evaluated recent state-of-the-art (SOTA) approaches for text detection and recognition on the dataset. By doing this, we expect to realize the barriers of current state-of-the-art approaches to solving the extremely challenging issues of scene text detection and recognition, as well as their applicability in this domain. Code and dataset are available at https://github.com/aiclub-uit/SignboardText/ and IEEE DataPort.</description><subject>Data models</subject><subject>Datasets</subject><subject>Image analysis</subject><subject>scene text detection</subject><subject>scene text recognition</subject><subject>Signboard images</subject><subject>State-of-the-art reviews</subject><subject>Text detection</subject><subject>Text recognition</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaJgqf0Fegh4Tt3vzXortWqgItiKx2WTncQtbbZuUtB_b9qU0j3MzryZ92bgRdEtRmOMkXqYTKezxWJMEGFjShWnkl1EA4KFSiin4vIsv45GTbNC3Us7iMtB9LZwVZ17E-wSftvHeB_jJ2ihaJ2vY1Pb-AMKX9XuULs6zuqk_Ybky61tfCLH2cZU0NxEV6VZNzA6_sPo83m2nL4m8_eXbDqZJwXlqk1UaqUFSlhuOBciBwuMCqUwQViC6jDDLM-ZLLoWE4IXnKfEYltyClKmdBhlva71ZqW3wW1M-NPeOH0AfKi0Ca0r1qANgZQokApQySQnaS6FKKk0guGCC9xp3fda2-B_dtC0euV3oe7O1xRxghVLheqmaD9VBN80AcrTVoz03gbd26D3NuijDR3rrmc5ADhjcIwYE_Qf0SSBjw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>do, Tien</creator><creator>Tran, Thuyen</creator><creator>Nguyen, Thua</creator><creator>Le, Duy-Dinh</creator><creator>Ngo, Thanh Duc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0356-5501</orcidid><orcidid>https://orcid.org/0000-0001-6882-0070</orcidid></search><sort><creationdate>2024</creationdate><title>SignboardText: Text Detection and Recognition in In-the-Wild Signboard Images</title><author>do, Tien ; Tran, Thuyen ; Nguyen, Thua ; Le, Duy-Dinh ; Ngo, Thanh Duc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-98d7de324ba5566bede4369912017e9556a4d5b47cbed4665c5582d1df53e7783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data models</topic><topic>Datasets</topic><topic>Image analysis</topic><topic>scene text detection</topic><topic>scene text recognition</topic><topic>Signboard images</topic><topic>State-of-the-art reviews</topic><topic>Text detection</topic><topic>Text recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>do, Tien</creatorcontrib><creatorcontrib>Tran, Thuyen</creatorcontrib><creatorcontrib>Nguyen, Thua</creatorcontrib><creatorcontrib>Le, Duy-Dinh</creatorcontrib><creatorcontrib>Ngo, Thanh Duc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>do, Tien</au><au>Tran, Thuyen</au><au>Nguyen, Thua</au><au>Le, Duy-Dinh</au><au>Ngo, Thanh Duc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SignboardText: Text Detection and Recognition in In-the-Wild Signboard Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>62942</spage><epage>62957</epage><pages>62942-62957</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Scene text detection and recognition have attracted much attention in recent years because of their potential applications. Detecting and recognizing texts in images may suffer from scene complexity and text variations. Some of these problematic cases are included in popular benchmark datasets, but only to a limited extent. In this work, we investigate the problem of scene text detection and recognition in a domain with extreme challenges. We focus on in-the-wild signboard images in which text commonly appears in different fonts, sizes, artistic styles, or languages with cluttered backgrounds. We first contribute an in-the-wild signboard dataset with 79K text instances on both line-level and word-level across 2,104 scene images. We then comprehensively evaluated recent state-of-the-art (SOTA) approaches for text detection and recognition on the dataset. By doing this, we expect to realize the barriers of current state-of-the-art approaches to solving the extremely challenging issues of scene text detection and recognition, as well as their applicability in this domain. Code and dataset are available at https://github.com/aiclub-uit/SignboardText/ and IEEE DataPort.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3395374</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0356-5501</orcidid><orcidid>https://orcid.org/0000-0001-6882-0070</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.62942-62957
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3395374
source IEEE Xplore Open Access Journals
subjects Data models
Datasets
Image analysis
scene text detection
scene text recognition
Signboard images
State-of-the-art reviews
Text detection
Text recognition
title SignboardText: Text Detection and Recognition in In-the-Wild Signboard Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SignboardText:%20Text%20Detection%20and%20Recognition%20in%20In-the-Wild%20Signboard%20Images&rft.jtitle=IEEE%20access&rft.au=do,%20Tien&rft.date=2024&rft.volume=12&rft.spage=62942&rft.epage=62957&rft.pages=62942-62957&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3395374&rft_dat=%3Cproquest_cross%3E3052194869%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-98d7de324ba5566bede4369912017e9556a4d5b47cbed4665c5582d1df53e7783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3052194869&rft_id=info:pmid/&rft_ieee_id=10510446&rfr_iscdi=true