Loading…
Unif-NTT: A Unified Hardware Design of Forward and Inverse NTT for PQC Algorithms
Polynomial multiplications based on the number theoretic transform (NTT) are critical in lattice-based post-quantum cryptography algorithms. Therefore, this paper presents a platform-agnostic unified hardware accelerator design (Unif-NTT) to compute the forward and inverse operations of the NTT for...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.94793-94804 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polynomial multiplications based on the number theoretic transform (NTT) are critical in lattice-based post-quantum cryptography algorithms. Therefore, this paper presents a platform-agnostic unified hardware accelerator design (Unif-NTT) to compute the forward and inverse operations of the NTT for the CRYSTALS-Kyber algorithm. Moreover, a unified design (Unif-BU) of the Cooley-Tukey and Gentleman-Sande butterflies is presented using two adders, multipliers, subtractors, routing multiplexers and barret-based modular reduction units. Finally, a dedicated controller is implemented for efficient control functionalities. The implementation results are realized on field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC) platforms. The Unif-NTT requires 1664 and 1792 clock cycles for one forward and inverse NTT computations, respectively. It can operate up to a maximum frequency of 212MHz and 2.5GHz over Virtex-7 FPGA and 28nm ASIC platforms, respectively. The Unif-NTT is 26% more efficient in Area-Time-Product compared to the most area-optimized NTT accelerator from the state-of-the-art. The Unif-NTT design is suited for applications that demand reasonable hardware resources with processing speed. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2024.3425813 |