Loading…
Variable-Length Transfer Delay-Based Synchronization Approach for Improved Dynamic Performance in Single-Phase Inverters
Synchronization of single-phase inverters is a challenging task due to the difficulty of deriving a rotating voltage frame, in the absence of adequate information from the other two phases. Moreover, modern standards, such as the fault ride-through (FRT) directives, require inverter-based distribute...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.151331-151347 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c244t-19ca5c6e537c35f858613e879ff7e841ecf358f57c7594f318032c3b478f94743 |
container_end_page | 151347 |
container_issue | |
container_start_page | 151331 |
container_title | IEEE access |
container_volume | 12 |
creator | Pompodakis, Evangelos E. Boubaris, Alexandros Voglitsis, Dionisis Papanikolaou, Nick Katsigiannis, Yiannis A. Karapidakis, Emmanuel S. |
description | Synchronization of single-phase inverters is a challenging task due to the difficulty of deriving a rotating voltage frame, in the absence of adequate information from the other two phases. Moreover, modern standards, such as the fault ride-through (FRT) directives, require inverter-based distributed generators (IBDGs) to respond as fast as possible to grid disturbances; thus, it is necessary to rely on accurate and fast synchronization algorithms. The scope of this paper is to propose a new synchronization technique, which satisfies three important requirements: a) fast dynamic response, b) adequate double frequency rejection, c) low computational complexity. Our synchronization technique is a flexible method relying on variable-length transfer delay, which calculates network frequency by analyzing voltage angle differentials. To enhance this differentiation process and address potential discontinuities, we introduce Heaviside-based functions. Both simulations conducted in MATLAB/Simulink and experimental trials demonstrate that our proposed synchronization method outperforms the most widely adopted existing techniques in terms of dynamic response and computational efficiency. Due to its excellent dynamic performance, the proposed method can offer a stable FRT capability, with fast detection of the voltage dips and seamless resynchronization following fault clearance, all while preventing DC-link overvoltage issues. |
doi_str_mv | 10.1109/ACCESS.2024.3479707 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3479707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10716382</ieee_id><doaj_id>oai_doaj_org_article_bd0c7d2335014ca493af75a3538f932b</doaj_id><sourcerecordid>3119786743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-19ca5c6e537c35f858613e879ff7e841ecf358f57c7594f318032c3b478f94743</originalsourceid><addsrcrecordid>eNpNkUFvGyEQhVdRKyVK8wuSA1LP68AOLHB0nbS1ZKmRnPaKMB5sLBtc2ER1f31IN6rCBebpzTfAa5prRieMUX07nc3ul8tJRzs-AS61pPKsuehYr1sQ0H94dz5vrkrZ0bpUlYS8aP78sjnY1R7bBcbNsCWP2cbiMZM73NtT-8UWXJPlKbptTjH8tUNIkUyPx5ys2xKfMpkfavFcXXenaA_BkQfMVT_Y6JCESJYhbir_YVtRZB6fMQ-Yy6fmo7f7gldv-2Xz8-v94-x7u_jxbT6bLlrXcT60TDsrXI8CpAPhlVA9A1RSey9RcYbOg1BeSCeF5h6YotA5WHGpvOaSw2UzH7nrZHfmmMPB5pNJNph_QsobY_MQ3B7Nak2dXHcAgjLuLNdgvRS2flxlQbeqrM8jqz749xOWwezSU471-gYY01L1dWB1wehyOZWS0f-fyqh5TcyMiZnXxMxbYrXrZuwKiPiuQ7IeVAcv95uSJg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119786743</pqid></control><display><type>article</type><title>Variable-Length Transfer Delay-Based Synchronization Approach for Improved Dynamic Performance in Single-Phase Inverters</title><source>IEEE Xplore Open Access Journals</source><creator>Pompodakis, Evangelos E. ; Boubaris, Alexandros ; Voglitsis, Dionisis ; Papanikolaou, Nick ; Katsigiannis, Yiannis A. ; Karapidakis, Emmanuel S.</creator><creatorcontrib>Pompodakis, Evangelos E. ; Boubaris, Alexandros ; Voglitsis, Dionisis ; Papanikolaou, Nick ; Katsigiannis, Yiannis A. ; Karapidakis, Emmanuel S.</creatorcontrib><description>Synchronization of single-phase inverters is a challenging task due to the difficulty of deriving a rotating voltage frame, in the absence of adequate information from the other two phases. Moreover, modern standards, such as the fault ride-through (FRT) directives, require inverter-based distributed generators (IBDGs) to respond as fast as possible to grid disturbances; thus, it is necessary to rely on accurate and fast synchronization algorithms. The scope of this paper is to propose a new synchronization technique, which satisfies three important requirements: a) fast dynamic response, b) adequate double frequency rejection, c) low computational complexity. Our synchronization technique is a flexible method relying on variable-length transfer delay, which calculates network frequency by analyzing voltage angle differentials. To enhance this differentiation process and address potential discontinuities, we introduce Heaviside-based functions. Both simulations conducted in MATLAB/Simulink and experimental trials demonstrate that our proposed synchronization method outperforms the most widely adopted existing techniques in terms of dynamic response and computational efficiency. Due to its excellent dynamic performance, the proposed method can offer a stable FRT capability, with fast detection of the voltage dips and seamless resynchronization following fault clearance, all while preventing DC-link overvoltage issues.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3479707</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Delays ; Distributed generation ; Dynamic response ; Frequency locked loop ; Frequency locked loops ; Frequency synchronization ; inverter ; Inverters ; Oscillators ; phase locked loop ; Phase locked loops ; Power harmonic filters ; Power system dynamics ; Power system stability ; single-phase PLL ; Synchronism ; Synchronization ; Voltage</subject><ispartof>IEEE access, 2024, Vol.12, p.151331-151347</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-19ca5c6e537c35f858613e879ff7e841ecf358f57c7594f318032c3b478f94743</cites><orcidid>0000-0001-6702-2149 ; 0000-0001-8546-1196 ; 0000-0001-7092-5031 ; 0000-0002-3589-0627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10716382$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Pompodakis, Evangelos E.</creatorcontrib><creatorcontrib>Boubaris, Alexandros</creatorcontrib><creatorcontrib>Voglitsis, Dionisis</creatorcontrib><creatorcontrib>Papanikolaou, Nick</creatorcontrib><creatorcontrib>Katsigiannis, Yiannis A.</creatorcontrib><creatorcontrib>Karapidakis, Emmanuel S.</creatorcontrib><title>Variable-Length Transfer Delay-Based Synchronization Approach for Improved Dynamic Performance in Single-Phase Inverters</title><title>IEEE access</title><addtitle>Access</addtitle><description>Synchronization of single-phase inverters is a challenging task due to the difficulty of deriving a rotating voltage frame, in the absence of adequate information from the other two phases. Moreover, modern standards, such as the fault ride-through (FRT) directives, require inverter-based distributed generators (IBDGs) to respond as fast as possible to grid disturbances; thus, it is necessary to rely on accurate and fast synchronization algorithms. The scope of this paper is to propose a new synchronization technique, which satisfies three important requirements: a) fast dynamic response, b) adequate double frequency rejection, c) low computational complexity. Our synchronization technique is a flexible method relying on variable-length transfer delay, which calculates network frequency by analyzing voltage angle differentials. To enhance this differentiation process and address potential discontinuities, we introduce Heaviside-based functions. Both simulations conducted in MATLAB/Simulink and experimental trials demonstrate that our proposed synchronization method outperforms the most widely adopted existing techniques in terms of dynamic response and computational efficiency. Due to its excellent dynamic performance, the proposed method can offer a stable FRT capability, with fast detection of the voltage dips and seamless resynchronization following fault clearance, all while preventing DC-link overvoltage issues.</description><subject>Algorithms</subject><subject>Delays</subject><subject>Distributed generation</subject><subject>Dynamic response</subject><subject>Frequency locked loop</subject><subject>Frequency locked loops</subject><subject>Frequency synchronization</subject><subject>inverter</subject><subject>Inverters</subject><subject>Oscillators</subject><subject>phase locked loop</subject><subject>Phase locked loops</subject><subject>Power harmonic filters</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>single-phase PLL</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFvGyEQhVdRKyVK8wuSA1LP68AOLHB0nbS1ZKmRnPaKMB5sLBtc2ER1f31IN6rCBebpzTfAa5prRieMUX07nc3ul8tJRzs-AS61pPKsuehYr1sQ0H94dz5vrkrZ0bpUlYS8aP78sjnY1R7bBcbNsCWP2cbiMZM73NtT-8UWXJPlKbptTjH8tUNIkUyPx5ys2xKfMpkfavFcXXenaA_BkQfMVT_Y6JCESJYhbir_YVtRZB6fMQ-Yy6fmo7f7gldv-2Xz8-v94-x7u_jxbT6bLlrXcT60TDsrXI8CpAPhlVA9A1RSey9RcYbOg1BeSCeF5h6YotA5WHGpvOaSw2UzH7nrZHfmmMPB5pNJNph_QsobY_MQ3B7Nak2dXHcAgjLuLNdgvRS2flxlQbeqrM8jqz749xOWwezSU471-gYY01L1dWB1wehyOZWS0f-fyqh5TcyMiZnXxMxbYrXrZuwKiPiuQ7IeVAcv95uSJg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Pompodakis, Evangelos E.</creator><creator>Boubaris, Alexandros</creator><creator>Voglitsis, Dionisis</creator><creator>Papanikolaou, Nick</creator><creator>Katsigiannis, Yiannis A.</creator><creator>Karapidakis, Emmanuel S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6702-2149</orcidid><orcidid>https://orcid.org/0000-0001-8546-1196</orcidid><orcidid>https://orcid.org/0000-0001-7092-5031</orcidid><orcidid>https://orcid.org/0000-0002-3589-0627</orcidid></search><sort><creationdate>2024</creationdate><title>Variable-Length Transfer Delay-Based Synchronization Approach for Improved Dynamic Performance in Single-Phase Inverters</title><author>Pompodakis, Evangelos E. ; Boubaris, Alexandros ; Voglitsis, Dionisis ; Papanikolaou, Nick ; Katsigiannis, Yiannis A. ; Karapidakis, Emmanuel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-19ca5c6e537c35f858613e879ff7e841ecf358f57c7594f318032c3b478f94743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Delays</topic><topic>Distributed generation</topic><topic>Dynamic response</topic><topic>Frequency locked loop</topic><topic>Frequency locked loops</topic><topic>Frequency synchronization</topic><topic>inverter</topic><topic>Inverters</topic><topic>Oscillators</topic><topic>phase locked loop</topic><topic>Phase locked loops</topic><topic>Power harmonic filters</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>single-phase PLL</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pompodakis, Evangelos E.</creatorcontrib><creatorcontrib>Boubaris, Alexandros</creatorcontrib><creatorcontrib>Voglitsis, Dionisis</creatorcontrib><creatorcontrib>Papanikolaou, Nick</creatorcontrib><creatorcontrib>Katsigiannis, Yiannis A.</creatorcontrib><creatorcontrib>Karapidakis, Emmanuel S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pompodakis, Evangelos E.</au><au>Boubaris, Alexandros</au><au>Voglitsis, Dionisis</au><au>Papanikolaou, Nick</au><au>Katsigiannis, Yiannis A.</au><au>Karapidakis, Emmanuel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable-Length Transfer Delay-Based Synchronization Approach for Improved Dynamic Performance in Single-Phase Inverters</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>151331</spage><epage>151347</epage><pages>151331-151347</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Synchronization of single-phase inverters is a challenging task due to the difficulty of deriving a rotating voltage frame, in the absence of adequate information from the other two phases. Moreover, modern standards, such as the fault ride-through (FRT) directives, require inverter-based distributed generators (IBDGs) to respond as fast as possible to grid disturbances; thus, it is necessary to rely on accurate and fast synchronization algorithms. The scope of this paper is to propose a new synchronization technique, which satisfies three important requirements: a) fast dynamic response, b) adequate double frequency rejection, c) low computational complexity. Our synchronization technique is a flexible method relying on variable-length transfer delay, which calculates network frequency by analyzing voltage angle differentials. To enhance this differentiation process and address potential discontinuities, we introduce Heaviside-based functions. Both simulations conducted in MATLAB/Simulink and experimental trials demonstrate that our proposed synchronization method outperforms the most widely adopted existing techniques in terms of dynamic response and computational efficiency. Due to its excellent dynamic performance, the proposed method can offer a stable FRT capability, with fast detection of the voltage dips and seamless resynchronization following fault clearance, all while preventing DC-link overvoltage issues.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3479707</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6702-2149</orcidid><orcidid>https://orcid.org/0000-0001-8546-1196</orcidid><orcidid>https://orcid.org/0000-0001-7092-5031</orcidid><orcidid>https://orcid.org/0000-0002-3589-0627</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.151331-151347 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3479707 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Delays Distributed generation Dynamic response Frequency locked loop Frequency locked loops Frequency synchronization inverter Inverters Oscillators phase locked loop Phase locked loops Power harmonic filters Power system dynamics Power system stability single-phase PLL Synchronism Synchronization Voltage |
title | Variable-Length Transfer Delay-Based Synchronization Approach for Improved Dynamic Performance in Single-Phase Inverters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable-Length%20Transfer%20Delay-Based%20Synchronization%20Approach%20for%20Improved%20Dynamic%20Performance%20in%20Single-Phase%20Inverters&rft.jtitle=IEEE%20access&rft.au=Pompodakis,%20Evangelos%20E.&rft.date=2024&rft.volume=12&rft.spage=151331&rft.epage=151347&rft.pages=151331-151347&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3479707&rft_dat=%3Cproquest_cross%3E3119786743%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-19ca5c6e537c35f858613e879ff7e841ecf358f57c7594f318032c3b478f94743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119786743&rft_id=info:pmid/&rft_ieee_id=10716382&rfr_iscdi=true |