Loading…

Variable-Length Transfer Delay-Based Synchronization Approach for Improved Dynamic Performance in Single-Phase Inverters

Synchronization of single-phase inverters is a challenging task due to the difficulty of deriving a rotating voltage frame, in the absence of adequate information from the other two phases. Moreover, modern standards, such as the fault ride-through (FRT) directives, require inverter-based distribute...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.151331-151347
Main Authors: Pompodakis, Evangelos E., Boubaris, Alexandros, Voglitsis, Dionisis, Papanikolaou, Nick, Katsigiannis, Yiannis A., Karapidakis, Emmanuel S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-19ca5c6e537c35f858613e879ff7e841ecf358f57c7594f318032c3b478f94743
container_end_page 151347
container_issue
container_start_page 151331
container_title IEEE access
container_volume 12
creator Pompodakis, Evangelos E.
Boubaris, Alexandros
Voglitsis, Dionisis
Papanikolaou, Nick
Katsigiannis, Yiannis A.
Karapidakis, Emmanuel S.
description Synchronization of single-phase inverters is a challenging task due to the difficulty of deriving a rotating voltage frame, in the absence of adequate information from the other two phases. Moreover, modern standards, such as the fault ride-through (FRT) directives, require inverter-based distributed generators (IBDGs) to respond as fast as possible to grid disturbances; thus, it is necessary to rely on accurate and fast synchronization algorithms. The scope of this paper is to propose a new synchronization technique, which satisfies three important requirements: a) fast dynamic response, b) adequate double frequency rejection, c) low computational complexity. Our synchronization technique is a flexible method relying on variable-length transfer delay, which calculates network frequency by analyzing voltage angle differentials. To enhance this differentiation process and address potential discontinuities, we introduce Heaviside-based functions. Both simulations conducted in MATLAB/Simulink and experimental trials demonstrate that our proposed synchronization method outperforms the most widely adopted existing techniques in terms of dynamic response and computational efficiency. Due to its excellent dynamic performance, the proposed method can offer a stable FRT capability, with fast detection of the voltage dips and seamless resynchronization following fault clearance, all while preventing DC-link overvoltage issues.
doi_str_mv 10.1109/ACCESS.2024.3479707
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3479707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10716382</ieee_id><doaj_id>oai_doaj_org_article_bd0c7d2335014ca493af75a3538f932b</doaj_id><sourcerecordid>3119786743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-19ca5c6e537c35f858613e879ff7e841ecf358f57c7594f318032c3b478f94743</originalsourceid><addsrcrecordid>eNpNkUFvGyEQhVdRKyVK8wuSA1LP68AOLHB0nbS1ZKmRnPaKMB5sLBtc2ER1f31IN6rCBebpzTfAa5prRieMUX07nc3ul8tJRzs-AS61pPKsuehYr1sQ0H94dz5vrkrZ0bpUlYS8aP78sjnY1R7bBcbNsCWP2cbiMZM73NtT-8UWXJPlKbptTjH8tUNIkUyPx5ys2xKfMpkfavFcXXenaA_BkQfMVT_Y6JCESJYhbir_YVtRZB6fMQ-Yy6fmo7f7gldv-2Xz8-v94-x7u_jxbT6bLlrXcT60TDsrXI8CpAPhlVA9A1RSey9RcYbOg1BeSCeF5h6YotA5WHGpvOaSw2UzH7nrZHfmmMPB5pNJNph_QsobY_MQ3B7Nak2dXHcAgjLuLNdgvRS2flxlQbeqrM8jqz749xOWwezSU471-gYY01L1dWB1wehyOZWS0f-fyqh5TcyMiZnXxMxbYrXrZuwKiPiuQ7IeVAcv95uSJg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119786743</pqid></control><display><type>article</type><title>Variable-Length Transfer Delay-Based Synchronization Approach for Improved Dynamic Performance in Single-Phase Inverters</title><source>IEEE Xplore Open Access Journals</source><creator>Pompodakis, Evangelos E. ; Boubaris, Alexandros ; Voglitsis, Dionisis ; Papanikolaou, Nick ; Katsigiannis, Yiannis A. ; Karapidakis, Emmanuel S.</creator><creatorcontrib>Pompodakis, Evangelos E. ; Boubaris, Alexandros ; Voglitsis, Dionisis ; Papanikolaou, Nick ; Katsigiannis, Yiannis A. ; Karapidakis, Emmanuel S.</creatorcontrib><description>Synchronization of single-phase inverters is a challenging task due to the difficulty of deriving a rotating voltage frame, in the absence of adequate information from the other two phases. Moreover, modern standards, such as the fault ride-through (FRT) directives, require inverter-based distributed generators (IBDGs) to respond as fast as possible to grid disturbances; thus, it is necessary to rely on accurate and fast synchronization algorithms. The scope of this paper is to propose a new synchronization technique, which satisfies three important requirements: a) fast dynamic response, b) adequate double frequency rejection, c) low computational complexity. Our synchronization technique is a flexible method relying on variable-length transfer delay, which calculates network frequency by analyzing voltage angle differentials. To enhance this differentiation process and address potential discontinuities, we introduce Heaviside-based functions. Both simulations conducted in MATLAB/Simulink and experimental trials demonstrate that our proposed synchronization method outperforms the most widely adopted existing techniques in terms of dynamic response and computational efficiency. Due to its excellent dynamic performance, the proposed method can offer a stable FRT capability, with fast detection of the voltage dips and seamless resynchronization following fault clearance, all while preventing DC-link overvoltage issues.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3479707</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Delays ; Distributed generation ; Dynamic response ; Frequency locked loop ; Frequency locked loops ; Frequency synchronization ; inverter ; Inverters ; Oscillators ; phase locked loop ; Phase locked loops ; Power harmonic filters ; Power system dynamics ; Power system stability ; single-phase PLL ; Synchronism ; Synchronization ; Voltage</subject><ispartof>IEEE access, 2024, Vol.12, p.151331-151347</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-19ca5c6e537c35f858613e879ff7e841ecf358f57c7594f318032c3b478f94743</cites><orcidid>0000-0001-6702-2149 ; 0000-0001-8546-1196 ; 0000-0001-7092-5031 ; 0000-0002-3589-0627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10716382$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Pompodakis, Evangelos E.</creatorcontrib><creatorcontrib>Boubaris, Alexandros</creatorcontrib><creatorcontrib>Voglitsis, Dionisis</creatorcontrib><creatorcontrib>Papanikolaou, Nick</creatorcontrib><creatorcontrib>Katsigiannis, Yiannis A.</creatorcontrib><creatorcontrib>Karapidakis, Emmanuel S.</creatorcontrib><title>Variable-Length Transfer Delay-Based Synchronization Approach for Improved Dynamic Performance in Single-Phase Inverters</title><title>IEEE access</title><addtitle>Access</addtitle><description>Synchronization of single-phase inverters is a challenging task due to the difficulty of deriving a rotating voltage frame, in the absence of adequate information from the other two phases. Moreover, modern standards, such as the fault ride-through (FRT) directives, require inverter-based distributed generators (IBDGs) to respond as fast as possible to grid disturbances; thus, it is necessary to rely on accurate and fast synchronization algorithms. The scope of this paper is to propose a new synchronization technique, which satisfies three important requirements: a) fast dynamic response, b) adequate double frequency rejection, c) low computational complexity. Our synchronization technique is a flexible method relying on variable-length transfer delay, which calculates network frequency by analyzing voltage angle differentials. To enhance this differentiation process and address potential discontinuities, we introduce Heaviside-based functions. Both simulations conducted in MATLAB/Simulink and experimental trials demonstrate that our proposed synchronization method outperforms the most widely adopted existing techniques in terms of dynamic response and computational efficiency. Due to its excellent dynamic performance, the proposed method can offer a stable FRT capability, with fast detection of the voltage dips and seamless resynchronization following fault clearance, all while preventing DC-link overvoltage issues.</description><subject>Algorithms</subject><subject>Delays</subject><subject>Distributed generation</subject><subject>Dynamic response</subject><subject>Frequency locked loop</subject><subject>Frequency locked loops</subject><subject>Frequency synchronization</subject><subject>inverter</subject><subject>Inverters</subject><subject>Oscillators</subject><subject>phase locked loop</subject><subject>Phase locked loops</subject><subject>Power harmonic filters</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>single-phase PLL</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFvGyEQhVdRKyVK8wuSA1LP68AOLHB0nbS1ZKmRnPaKMB5sLBtc2ER1f31IN6rCBebpzTfAa5prRieMUX07nc3ul8tJRzs-AS61pPKsuehYr1sQ0H94dz5vrkrZ0bpUlYS8aP78sjnY1R7bBcbNsCWP2cbiMZM73NtT-8UWXJPlKbptTjH8tUNIkUyPx5ys2xKfMpkfavFcXXenaA_BkQfMVT_Y6JCESJYhbir_YVtRZB6fMQ-Yy6fmo7f7gldv-2Xz8-v94-x7u_jxbT6bLlrXcT60TDsrXI8CpAPhlVA9A1RSey9RcYbOg1BeSCeF5h6YotA5WHGpvOaSw2UzH7nrZHfmmMPB5pNJNph_QsobY_MQ3B7Nak2dXHcAgjLuLNdgvRS2flxlQbeqrM8jqz749xOWwezSU471-gYY01L1dWB1wehyOZWS0f-fyqh5TcyMiZnXxMxbYrXrZuwKiPiuQ7IeVAcv95uSJg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Pompodakis, Evangelos E.</creator><creator>Boubaris, Alexandros</creator><creator>Voglitsis, Dionisis</creator><creator>Papanikolaou, Nick</creator><creator>Katsigiannis, Yiannis A.</creator><creator>Karapidakis, Emmanuel S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6702-2149</orcidid><orcidid>https://orcid.org/0000-0001-8546-1196</orcidid><orcidid>https://orcid.org/0000-0001-7092-5031</orcidid><orcidid>https://orcid.org/0000-0002-3589-0627</orcidid></search><sort><creationdate>2024</creationdate><title>Variable-Length Transfer Delay-Based Synchronization Approach for Improved Dynamic Performance in Single-Phase Inverters</title><author>Pompodakis, Evangelos E. ; Boubaris, Alexandros ; Voglitsis, Dionisis ; Papanikolaou, Nick ; Katsigiannis, Yiannis A. ; Karapidakis, Emmanuel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-19ca5c6e537c35f858613e879ff7e841ecf358f57c7594f318032c3b478f94743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Delays</topic><topic>Distributed generation</topic><topic>Dynamic response</topic><topic>Frequency locked loop</topic><topic>Frequency locked loops</topic><topic>Frequency synchronization</topic><topic>inverter</topic><topic>Inverters</topic><topic>Oscillators</topic><topic>phase locked loop</topic><topic>Phase locked loops</topic><topic>Power harmonic filters</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>single-phase PLL</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pompodakis, Evangelos E.</creatorcontrib><creatorcontrib>Boubaris, Alexandros</creatorcontrib><creatorcontrib>Voglitsis, Dionisis</creatorcontrib><creatorcontrib>Papanikolaou, Nick</creatorcontrib><creatorcontrib>Katsigiannis, Yiannis A.</creatorcontrib><creatorcontrib>Karapidakis, Emmanuel S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pompodakis, Evangelos E.</au><au>Boubaris, Alexandros</au><au>Voglitsis, Dionisis</au><au>Papanikolaou, Nick</au><au>Katsigiannis, Yiannis A.</au><au>Karapidakis, Emmanuel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable-Length Transfer Delay-Based Synchronization Approach for Improved Dynamic Performance in Single-Phase Inverters</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>151331</spage><epage>151347</epage><pages>151331-151347</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Synchronization of single-phase inverters is a challenging task due to the difficulty of deriving a rotating voltage frame, in the absence of adequate information from the other two phases. Moreover, modern standards, such as the fault ride-through (FRT) directives, require inverter-based distributed generators (IBDGs) to respond as fast as possible to grid disturbances; thus, it is necessary to rely on accurate and fast synchronization algorithms. The scope of this paper is to propose a new synchronization technique, which satisfies three important requirements: a) fast dynamic response, b) adequate double frequency rejection, c) low computational complexity. Our synchronization technique is a flexible method relying on variable-length transfer delay, which calculates network frequency by analyzing voltage angle differentials. To enhance this differentiation process and address potential discontinuities, we introduce Heaviside-based functions. Both simulations conducted in MATLAB/Simulink and experimental trials demonstrate that our proposed synchronization method outperforms the most widely adopted existing techniques in terms of dynamic response and computational efficiency. Due to its excellent dynamic performance, the proposed method can offer a stable FRT capability, with fast detection of the voltage dips and seamless resynchronization following fault clearance, all while preventing DC-link overvoltage issues.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3479707</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6702-2149</orcidid><orcidid>https://orcid.org/0000-0001-8546-1196</orcidid><orcidid>https://orcid.org/0000-0001-7092-5031</orcidid><orcidid>https://orcid.org/0000-0002-3589-0627</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.151331-151347
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3479707
source IEEE Xplore Open Access Journals
subjects Algorithms
Delays
Distributed generation
Dynamic response
Frequency locked loop
Frequency locked loops
Frequency synchronization
inverter
Inverters
Oscillators
phase locked loop
Phase locked loops
Power harmonic filters
Power system dynamics
Power system stability
single-phase PLL
Synchronism
Synchronization
Voltage
title Variable-Length Transfer Delay-Based Synchronization Approach for Improved Dynamic Performance in Single-Phase Inverters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable-Length%20Transfer%20Delay-Based%20Synchronization%20Approach%20for%20Improved%20Dynamic%20Performance%20in%20Single-Phase%20Inverters&rft.jtitle=IEEE%20access&rft.au=Pompodakis,%20Evangelos%20E.&rft.date=2024&rft.volume=12&rft.spage=151331&rft.epage=151347&rft.pages=151331-151347&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3479707&rft_dat=%3Cproquest_cross%3E3119786743%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-19ca5c6e537c35f858613e879ff7e841ecf358f57c7594f318032c3b478f94743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119786743&rft_id=info:pmid/&rft_ieee_id=10716382&rfr_iscdi=true