Loading…

Empowering IoT Resilience: Hybrid Deep Learning Techniques for Enhanced Security

The Internet of Things (IoT) has dramatically changed human context with the environment, ensuring productivity, comfort, and quality of life through a variety of services and applications. Nevertheless, the rapid growth of IoT devices has introduced significant security concerns like device vulnera...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.180597-180618
Main Authors: Maaz, Muhammad, Ahmed, Ghufran, Sami Al-Shamayleh, Ahmad, Akhunzada, Adnan, Siddiqui, Shahbaz, Hussein Al-Ghushami, Abdulla
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-616bb4b52a0d126f3512e69c0dc6e4f6dde8c9b5823296d11c818e96ab1deae23
container_end_page 180618
container_issue
container_start_page 180597
container_title IEEE access
container_volume 12
creator Maaz, Muhammad
Ahmed, Ghufran
Sami Al-Shamayleh, Ahmad
Akhunzada, Adnan
Siddiqui, Shahbaz
Hussein Al-Ghushami, Abdulla
description The Internet of Things (IoT) has dramatically changed human context with the environment, ensuring productivity, comfort, and quality of life through a variety of services and applications. Nevertheless, the rapid growth of IoT devices has introduced significant security concerns like device vulnerabilities, unauthorized access, and potential data breaches.This article deals with an immediate call to empower IoT resilience against a wide range of sophisticated and prevalent cybersecurity threats. We developed two novel hybrid deep learning mechanisms, CNN-GRU (Convolutional Gated Recurrent Neural Networks) and CNN-LSTM (Convolutional Long Short-Term Memory Neural Networks), and extensively evaluated their performance on the state-of-the-art Kitsune and TON-IoT publicly available datasets. These benchmark datasets contain a variety of multivariate IoT attacks. The aim is to demonstrate the robustness of the proposed algorithms in effectively identifying telnet, password, distributed denial of service (DDoS), injection, and backdoor vulnerabilities in IoT ecosystems. We achieved approximately 99.6% accuracy in correctly distinguishing between malevolent and non-malicious activities on the Kitsune dataset. Additionally, the TON-IoT dataset demonstrated a remarkable accuracy rate of 99.00%, with minimal drops and low false alert rates. The time efficiency of both proposed algorithms renders them well-suited for deployment in IoT ecosystems. We evaluated and cross validated the proposed techniques with current benchmarks. Consequently, the proposed hybrid deep learning anomaly detection approaches not only enhance IoT security but also provide a robust control system for addressing emerging multivariate cyber threats.
doi_str_mv 10.1109/ACCESS.2024.3482005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3482005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10720064</ieee_id><doaj_id>oai_doaj_org_article_18e51f3dedf24f4f8da036ab9f1f16d7</doaj_id><sourcerecordid>3143028865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-616bb4b52a0d126f3512e69c0dc6e4f6dde8c9b5823296d11c818e96ab1deae23</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITGO_AA6VOHfko81SblMpbNIkEBvnKE2cLdPWlHQT2r8npROaL7bs955tvSi6x2iMMcqfpkVRLpdjgkg6piknCGVX0YBglic0o-z6or6NRm27RSF4aGWTQfRR7hv3A97W63juVvEntHZnoVbwHM9Olbc6fgFo4gVIX3egFahNbb-P0MbG-bisNzKAdbwEdfT2cLqLbozctTA652H09VquilmyeH-bF9NFogjPDwnDrKrSKiMSaUyYoRkmwHKFtGKQGqY1cJVXGSeU5ExjrDjmkDNZYQ0SCB1G815XO7kVjbd76U_CSSv-Gs6vhfQHq3YgAjHDhmrQhqQmNVxLRINSbrDBTE-C1mOv1XjXfXYQW3f0dThfUJxSRDhnWUDRHqW8a1sP5n8rRqJzQvROiM4JcXYisB56lgWAC8YkTFlKfwHLgIRr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143028865</pqid></control><display><type>article</type><title>Empowering IoT Resilience: Hybrid Deep Learning Techniques for Enhanced Security</title><source>IEEE Xplore Open Access Journals</source><creator>Maaz, Muhammad ; Ahmed, Ghufran ; Sami Al-Shamayleh, Ahmad ; Akhunzada, Adnan ; Siddiqui, Shahbaz ; Hussein Al-Ghushami, Abdulla</creator><creatorcontrib>Maaz, Muhammad ; Ahmed, Ghufran ; Sami Al-Shamayleh, Ahmad ; Akhunzada, Adnan ; Siddiqui, Shahbaz ; Hussein Al-Ghushami, Abdulla</creatorcontrib><description>The Internet of Things (IoT) has dramatically changed human context with the environment, ensuring productivity, comfort, and quality of life through a variety of services and applications. Nevertheless, the rapid growth of IoT devices has introduced significant security concerns like device vulnerabilities, unauthorized access, and potential data breaches.This article deals with an immediate call to empower IoT resilience against a wide range of sophisticated and prevalent cybersecurity threats. We developed two novel hybrid deep learning mechanisms, CNN-GRU (Convolutional Gated Recurrent Neural Networks) and CNN-LSTM (Convolutional Long Short-Term Memory Neural Networks), and extensively evaluated their performance on the state-of-the-art Kitsune and TON-IoT publicly available datasets. These benchmark datasets contain a variety of multivariate IoT attacks. The aim is to demonstrate the robustness of the proposed algorithms in effectively identifying telnet, password, distributed denial of service (DDoS), injection, and backdoor vulnerabilities in IoT ecosystems. We achieved approximately 99.6% accuracy in correctly distinguishing between malevolent and non-malicious activities on the Kitsune dataset. Additionally, the TON-IoT dataset demonstrated a remarkable accuracy rate of 99.00%, with minimal drops and low false alert rates. The time efficiency of both proposed algorithms renders them well-suited for deployment in IoT ecosystems. We evaluated and cross validated the proposed techniques with current benchmarks. Consequently, the proposed hybrid deep learning anomaly detection approaches not only enhance IoT security but also provide a robust control system for addressing emerging multivariate cyber threats.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3482005</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Anomalies ; Artificial neural networks ; backdoor ; Benchmarks ; botnet ; Computer security ; Convolutional neural networks ; Cybersecurity ; Datasets ; DDOS ; Deep learning ; deep learning (DL) ; Denial of service attacks ; Ecosystems ; Empowerment ; Feature extraction ; injection attacks ; Internet of Things ; Intrusion detection ; IoT ; Iron ; Long short term memory ; Machine learning ; machine learning (ML) ; Multivariate analysis ; Neural networks ; Performance evaluation ; Recurrent neural networks ; Resilience ; Robust control ; Threat evaluation</subject><ispartof>IEEE access, 2024, Vol.12, p.180597-180618</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-616bb4b52a0d126f3512e69c0dc6e4f6dde8c9b5823296d11c818e96ab1deae23</cites><orcidid>0000-0001-8370-9290 ; 0000-0001-9199-9267 ; 0000-0001-8179-5682 ; 0000-0002-0077-9638 ; 0000-0002-7222-2433 ; 0000-0002-1161-6439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10720064$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Maaz, Muhammad</creatorcontrib><creatorcontrib>Ahmed, Ghufran</creatorcontrib><creatorcontrib>Sami Al-Shamayleh, Ahmad</creatorcontrib><creatorcontrib>Akhunzada, Adnan</creatorcontrib><creatorcontrib>Siddiqui, Shahbaz</creatorcontrib><creatorcontrib>Hussein Al-Ghushami, Abdulla</creatorcontrib><title>Empowering IoT Resilience: Hybrid Deep Learning Techniques for Enhanced Security</title><title>IEEE access</title><addtitle>Access</addtitle><description>The Internet of Things (IoT) has dramatically changed human context with the environment, ensuring productivity, comfort, and quality of life through a variety of services and applications. Nevertheless, the rapid growth of IoT devices has introduced significant security concerns like device vulnerabilities, unauthorized access, and potential data breaches.This article deals with an immediate call to empower IoT resilience against a wide range of sophisticated and prevalent cybersecurity threats. We developed two novel hybrid deep learning mechanisms, CNN-GRU (Convolutional Gated Recurrent Neural Networks) and CNN-LSTM (Convolutional Long Short-Term Memory Neural Networks), and extensively evaluated their performance on the state-of-the-art Kitsune and TON-IoT publicly available datasets. These benchmark datasets contain a variety of multivariate IoT attacks. The aim is to demonstrate the robustness of the proposed algorithms in effectively identifying telnet, password, distributed denial of service (DDoS), injection, and backdoor vulnerabilities in IoT ecosystems. We achieved approximately 99.6% accuracy in correctly distinguishing between malevolent and non-malicious activities on the Kitsune dataset. Additionally, the TON-IoT dataset demonstrated a remarkable accuracy rate of 99.00%, with minimal drops and low false alert rates. The time efficiency of both proposed algorithms renders them well-suited for deployment in IoT ecosystems. We evaluated and cross validated the proposed techniques with current benchmarks. Consequently, the proposed hybrid deep learning anomaly detection approaches not only enhance IoT security but also provide a robust control system for addressing emerging multivariate cyber threats.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>backdoor</subject><subject>Benchmarks</subject><subject>botnet</subject><subject>Computer security</subject><subject>Convolutional neural networks</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>DDOS</subject><subject>Deep learning</subject><subject>deep learning (DL)</subject><subject>Denial of service attacks</subject><subject>Ecosystems</subject><subject>Empowerment</subject><subject>Feature extraction</subject><subject>injection attacks</subject><subject>Internet of Things</subject><subject>Intrusion detection</subject><subject>IoT</subject><subject>Iron</subject><subject>Long short term memory</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Multivariate analysis</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Recurrent neural networks</subject><subject>Resilience</subject><subject>Robust control</subject><subject>Threat evaluation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBITGO_AA6VOHfko81SblMpbNIkEBvnKE2cLdPWlHQT2r8npROaL7bs955tvSi6x2iMMcqfpkVRLpdjgkg6piknCGVX0YBglic0o-z6or6NRm27RSF4aGWTQfRR7hv3A97W63juVvEntHZnoVbwHM9Olbc6fgFo4gVIX3egFahNbb-P0MbG-bisNzKAdbwEdfT2cLqLbozctTA652H09VquilmyeH-bF9NFogjPDwnDrKrSKiMSaUyYoRkmwHKFtGKQGqY1cJVXGSeU5ExjrDjmkDNZYQ0SCB1G815XO7kVjbd76U_CSSv-Gs6vhfQHq3YgAjHDhmrQhqQmNVxLRINSbrDBTE-C1mOv1XjXfXYQW3f0dThfUJxSRDhnWUDRHqW8a1sP5n8rRqJzQvROiM4JcXYisB56lgWAC8YkTFlKfwHLgIRr</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Maaz, Muhammad</creator><creator>Ahmed, Ghufran</creator><creator>Sami Al-Shamayleh, Ahmad</creator><creator>Akhunzada, Adnan</creator><creator>Siddiqui, Shahbaz</creator><creator>Hussein Al-Ghushami, Abdulla</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8370-9290</orcidid><orcidid>https://orcid.org/0000-0001-9199-9267</orcidid><orcidid>https://orcid.org/0000-0001-8179-5682</orcidid><orcidid>https://orcid.org/0000-0002-0077-9638</orcidid><orcidid>https://orcid.org/0000-0002-7222-2433</orcidid><orcidid>https://orcid.org/0000-0002-1161-6439</orcidid></search><sort><creationdate>2024</creationdate><title>Empowering IoT Resilience: Hybrid Deep Learning Techniques for Enhanced Security</title><author>Maaz, Muhammad ; Ahmed, Ghufran ; Sami Al-Shamayleh, Ahmad ; Akhunzada, Adnan ; Siddiqui, Shahbaz ; Hussein Al-Ghushami, Abdulla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-616bb4b52a0d126f3512e69c0dc6e4f6dde8c9b5823296d11c818e96ab1deae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>backdoor</topic><topic>Benchmarks</topic><topic>botnet</topic><topic>Computer security</topic><topic>Convolutional neural networks</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>DDOS</topic><topic>Deep learning</topic><topic>deep learning (DL)</topic><topic>Denial of service attacks</topic><topic>Ecosystems</topic><topic>Empowerment</topic><topic>Feature extraction</topic><topic>injection attacks</topic><topic>Internet of Things</topic><topic>Intrusion detection</topic><topic>IoT</topic><topic>Iron</topic><topic>Long short term memory</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Multivariate analysis</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Recurrent neural networks</topic><topic>Resilience</topic><topic>Robust control</topic><topic>Threat evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maaz, Muhammad</creatorcontrib><creatorcontrib>Ahmed, Ghufran</creatorcontrib><creatorcontrib>Sami Al-Shamayleh, Ahmad</creatorcontrib><creatorcontrib>Akhunzada, Adnan</creatorcontrib><creatorcontrib>Siddiqui, Shahbaz</creatorcontrib><creatorcontrib>Hussein Al-Ghushami, Abdulla</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maaz, Muhammad</au><au>Ahmed, Ghufran</au><au>Sami Al-Shamayleh, Ahmad</au><au>Akhunzada, Adnan</au><au>Siddiqui, Shahbaz</au><au>Hussein Al-Ghushami, Abdulla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empowering IoT Resilience: Hybrid Deep Learning Techniques for Enhanced Security</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>180597</spage><epage>180618</epage><pages>180597-180618</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The Internet of Things (IoT) has dramatically changed human context with the environment, ensuring productivity, comfort, and quality of life through a variety of services and applications. Nevertheless, the rapid growth of IoT devices has introduced significant security concerns like device vulnerabilities, unauthorized access, and potential data breaches.This article deals with an immediate call to empower IoT resilience against a wide range of sophisticated and prevalent cybersecurity threats. We developed two novel hybrid deep learning mechanisms, CNN-GRU (Convolutional Gated Recurrent Neural Networks) and CNN-LSTM (Convolutional Long Short-Term Memory Neural Networks), and extensively evaluated their performance on the state-of-the-art Kitsune and TON-IoT publicly available datasets. These benchmark datasets contain a variety of multivariate IoT attacks. The aim is to demonstrate the robustness of the proposed algorithms in effectively identifying telnet, password, distributed denial of service (DDoS), injection, and backdoor vulnerabilities in IoT ecosystems. We achieved approximately 99.6% accuracy in correctly distinguishing between malevolent and non-malicious activities on the Kitsune dataset. Additionally, the TON-IoT dataset demonstrated a remarkable accuracy rate of 99.00%, with minimal drops and low false alert rates. The time efficiency of both proposed algorithms renders them well-suited for deployment in IoT ecosystems. We evaluated and cross validated the proposed techniques with current benchmarks. Consequently, the proposed hybrid deep learning anomaly detection approaches not only enhance IoT security but also provide a robust control system for addressing emerging multivariate cyber threats.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3482005</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8370-9290</orcidid><orcidid>https://orcid.org/0000-0001-9199-9267</orcidid><orcidid>https://orcid.org/0000-0001-8179-5682</orcidid><orcidid>https://orcid.org/0000-0002-0077-9638</orcidid><orcidid>https://orcid.org/0000-0002-7222-2433</orcidid><orcidid>https://orcid.org/0000-0002-1161-6439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.180597-180618
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3482005
source IEEE Xplore Open Access Journals
subjects Accuracy
Algorithms
Anomalies
Artificial neural networks
backdoor
Benchmarks
botnet
Computer security
Convolutional neural networks
Cybersecurity
Datasets
DDOS
Deep learning
deep learning (DL)
Denial of service attacks
Ecosystems
Empowerment
Feature extraction
injection attacks
Internet of Things
Intrusion detection
IoT
Iron
Long short term memory
Machine learning
machine learning (ML)
Multivariate analysis
Neural networks
Performance evaluation
Recurrent neural networks
Resilience
Robust control
Threat evaluation
title Empowering IoT Resilience: Hybrid Deep Learning Techniques for Enhanced Security
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empowering%20IoT%20Resilience:%20Hybrid%20Deep%20Learning%20Techniques%20for%20Enhanced%20Security&rft.jtitle=IEEE%20access&rft.au=Maaz,%20Muhammad&rft.date=2024&rft.volume=12&rft.spage=180597&rft.epage=180618&rft.pages=180597-180618&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3482005&rft_dat=%3Cproquest_cross%3E3143028865%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-616bb4b52a0d126f3512e69c0dc6e4f6dde8c9b5823296d11c818e96ab1deae23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3143028865&rft_id=info:pmid/&rft_ieee_id=10720064&rfr_iscdi=true