Loading…

Zero-Dimensional Modeling of a Nanosecond Pulsed Discharge

This article proposes a 0D model for Nanosecond Pulsed Discharges (NPD). The model incorporates the high-frequency transmission line, a lumped equivalent circuit for the load, a two-temperature model for heavy particles and electrons, and an ionization scheme. The load impedance is modeled as a stra...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.157807-157821
Main Authors: Balmelli, Michelangelo, Farber, Raphael, Soltic, Patrik, Bleiner, Davide, Franck, Christian M., Biela, Jurgen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c261t-be8006d9a03677ceb89073851a23d5d6c8c11e2899997baf74f720f71f74050f3
container_end_page 157821
container_issue
container_start_page 157807
container_title IEEE access
container_volume 12
creator Balmelli, Michelangelo
Farber, Raphael
Soltic, Patrik
Bleiner, Davide
Franck, Christian M.
Biela, Jurgen
description This article proposes a 0D model for Nanosecond Pulsed Discharges (NPD). The model incorporates the high-frequency transmission line, a lumped equivalent circuit for the load, a two-temperature model for heavy particles and electrons, and an ionization scheme. The load impedance is modeled as a stray capacitance in parallel with a stray inductance and a time-varying electrical resistance, which depends on the plasma radius and electron number density. The ionization mechanism used to simulate the electron number density includes the impact ionization of N2 and O2 and two- and three-body attachments on O2, all dependent on the applied electric field and gas temperature. The temperature variation is calculated using the energy conservation equation, with electrical power as the source. The model is tested against current and voltage measurements of NPDs in sub-mm gaps at pressures ranging from 2 to 8 bar. The comparison of simulation results with experimental data shows that the plasma's electrical resistance rapidly drops to low values within approximately 1-2 ns after breakdown. This drop is attributed to the formation of a fully ionized micrometer-sized thermal spark, a conclusion supported by optical emission spectroscopy measurements. This model is intended for experimental plasma researchers seeking a simple tool to understand plasma states through basic electrical measurements and for electrical engineers needing insights into varying load impedance, a crucial parameter for pulse generator design.
doi_str_mv 10.1109/ACCESS.2024.3486583
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3486583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10735160</ieee_id><doaj_id>oai_doaj_org_article_1d6a07e9d62d41a0ba10d4a33cc3bd53</doaj_id><sourcerecordid>oai_doaj_org_article_1d6a07e9d62d41a0ba10d4a33cc3bd53</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-be8006d9a03677ceb89073851a23d5d6c8c11e2899997baf74f720f71f74050f3</originalsourceid><addsrcrecordid>eNpNkMlOwzAURS0EElXpF8AiP5DiIR7CrkoLVCqDVNiwsV5sp7hKY2SXBX9PSirUu3lPV7pncRC6JnhKCC5vZ1W1WK-nFNNiygoluGJnaESJKHPGmTg_-S_RJKUt7qP6issRuvtwMeRzv3Nd8qGDNnsK1rW-22ShySB7hi4kZ0Jns9fvNjmbzX0ynxA37gpdNNBXk-Mdo_f7xVv1mK9eHpbVbJUbKsg-r53CWNgSMBNSGlerEkumOAHKLLfCKEOIo6rsI2toZNFIihtJ-g9z3LAxWg5cG2Crv6LfQfzRAbz-K0LcaIh7b1qniRWApSutoLYggGsg2BbAmDGstpz1LDawTAwpRdf88wjWB5t6sKkPNvXRZr-6GVbeOXeykIwTgdkvREdvZQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Zero-Dimensional Modeling of a Nanosecond Pulsed Discharge</title><source>IEEE Xplore Open Access Journals</source><creator>Balmelli, Michelangelo ; Farber, Raphael ; Soltic, Patrik ; Bleiner, Davide ; Franck, Christian M. ; Biela, Jurgen</creator><creatorcontrib>Balmelli, Michelangelo ; Farber, Raphael ; Soltic, Patrik ; Bleiner, Davide ; Franck, Christian M. ; Biela, Jurgen</creatorcontrib><description>This article proposes a 0D model for Nanosecond Pulsed Discharges (NPD). The model incorporates the high-frequency transmission line, a lumped equivalent circuit for the load, a two-temperature model for heavy particles and electrons, and an ionization scheme. The load impedance is modeled as a stray capacitance in parallel with a stray inductance and a time-varying electrical resistance, which depends on the plasma radius and electron number density. The ionization mechanism used to simulate the electron number density includes the impact ionization of N2 and O2 and two- and three-body attachments on O2, all dependent on the applied electric field and gas temperature. The temperature variation is calculated using the energy conservation equation, with electrical power as the source. The model is tested against current and voltage measurements of NPDs in sub-mm gaps at pressures ranging from 2 to 8 bar. The comparison of simulation results with experimental data shows that the plasma's electrical resistance rapidly drops to low values within approximately 1-2 ns after breakdown. This drop is attributed to the formation of a fully ionized micrometer-sized thermal spark, a conclusion supported by optical emission spectroscopy measurements. This model is intended for experimental plasma researchers seeking a simple tool to understand plasma states through basic electrical measurements and for electrical engineers needing insights into varying load impedance, a crucial parameter for pulse generator design.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3486583</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Discharges (electric) ; Electrons ; ignition ; Integrated circuit modeling ; Ionization ; Load modeling ; Mathematical models ; Nanosecond pulsed discharge ; non-equilibrium plasma ; NPD ; Plasma temperature ; Plasmas ; spark-ignition engines ; Sparks ; thermal spark ; transient plasma ; Voltage measurement</subject><ispartof>IEEE access, 2024, Vol.12, p.157807-157821</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-be8006d9a03677ceb89073851a23d5d6c8c11e2899997baf74f720f71f74050f3</cites><orcidid>0000-0001-9099-6486 ; 0000-0003-2289-7608 ; 0000-0002-2201-7327 ; 0000-0001-8511-8670 ; 0000-0001-7787-3748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10735160$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Balmelli, Michelangelo</creatorcontrib><creatorcontrib>Farber, Raphael</creatorcontrib><creatorcontrib>Soltic, Patrik</creatorcontrib><creatorcontrib>Bleiner, Davide</creatorcontrib><creatorcontrib>Franck, Christian M.</creatorcontrib><creatorcontrib>Biela, Jurgen</creatorcontrib><title>Zero-Dimensional Modeling of a Nanosecond Pulsed Discharge</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article proposes a 0D model for Nanosecond Pulsed Discharges (NPD). The model incorporates the high-frequency transmission line, a lumped equivalent circuit for the load, a two-temperature model for heavy particles and electrons, and an ionization scheme. The load impedance is modeled as a stray capacitance in parallel with a stray inductance and a time-varying electrical resistance, which depends on the plasma radius and electron number density. The ionization mechanism used to simulate the electron number density includes the impact ionization of N2 and O2 and two- and three-body attachments on O2, all dependent on the applied electric field and gas temperature. The temperature variation is calculated using the energy conservation equation, with electrical power as the source. The model is tested against current and voltage measurements of NPDs in sub-mm gaps at pressures ranging from 2 to 8 bar. The comparison of simulation results with experimental data shows that the plasma's electrical resistance rapidly drops to low values within approximately 1-2 ns after breakdown. This drop is attributed to the formation of a fully ionized micrometer-sized thermal spark, a conclusion supported by optical emission spectroscopy measurements. This model is intended for experimental plasma researchers seeking a simple tool to understand plasma states through basic electrical measurements and for electrical engineers needing insights into varying load impedance, a crucial parameter for pulse generator design.</description><subject>Discharges (electric)</subject><subject>Electrons</subject><subject>ignition</subject><subject>Integrated circuit modeling</subject><subject>Ionization</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>Nanosecond pulsed discharge</subject><subject>non-equilibrium plasma</subject><subject>NPD</subject><subject>Plasma temperature</subject><subject>Plasmas</subject><subject>spark-ignition engines</subject><subject>Sparks</subject><subject>thermal spark</subject><subject>transient plasma</subject><subject>Voltage measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMlOwzAURS0EElXpF8AiP5DiIR7CrkoLVCqDVNiwsV5sp7hKY2SXBX9PSirUu3lPV7pncRC6JnhKCC5vZ1W1WK-nFNNiygoluGJnaESJKHPGmTg_-S_RJKUt7qP6issRuvtwMeRzv3Nd8qGDNnsK1rW-22ShySB7hi4kZ0Jns9fvNjmbzX0ynxA37gpdNNBXk-Mdo_f7xVv1mK9eHpbVbJUbKsg-r53CWNgSMBNSGlerEkumOAHKLLfCKEOIo6rsI2toZNFIihtJ-g9z3LAxWg5cG2Crv6LfQfzRAbz-K0LcaIh7b1qniRWApSutoLYggGsg2BbAmDGstpz1LDawTAwpRdf88wjWB5t6sKkPNvXRZr-6GVbeOXeykIwTgdkvREdvZQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Balmelli, Michelangelo</creator><creator>Farber, Raphael</creator><creator>Soltic, Patrik</creator><creator>Bleiner, Davide</creator><creator>Franck, Christian M.</creator><creator>Biela, Jurgen</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9099-6486</orcidid><orcidid>https://orcid.org/0000-0003-2289-7608</orcidid><orcidid>https://orcid.org/0000-0002-2201-7327</orcidid><orcidid>https://orcid.org/0000-0001-8511-8670</orcidid><orcidid>https://orcid.org/0000-0001-7787-3748</orcidid></search><sort><creationdate>2024</creationdate><title>Zero-Dimensional Modeling of a Nanosecond Pulsed Discharge</title><author>Balmelli, Michelangelo ; Farber, Raphael ; Soltic, Patrik ; Bleiner, Davide ; Franck, Christian M. ; Biela, Jurgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-be8006d9a03677ceb89073851a23d5d6c8c11e2899997baf74f720f71f74050f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Discharges (electric)</topic><topic>Electrons</topic><topic>ignition</topic><topic>Integrated circuit modeling</topic><topic>Ionization</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>Nanosecond pulsed discharge</topic><topic>non-equilibrium plasma</topic><topic>NPD</topic><topic>Plasma temperature</topic><topic>Plasmas</topic><topic>spark-ignition engines</topic><topic>Sparks</topic><topic>thermal spark</topic><topic>transient plasma</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balmelli, Michelangelo</creatorcontrib><creatorcontrib>Farber, Raphael</creatorcontrib><creatorcontrib>Soltic, Patrik</creatorcontrib><creatorcontrib>Bleiner, Davide</creatorcontrib><creatorcontrib>Franck, Christian M.</creatorcontrib><creatorcontrib>Biela, Jurgen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balmelli, Michelangelo</au><au>Farber, Raphael</au><au>Soltic, Patrik</au><au>Bleiner, Davide</au><au>Franck, Christian M.</au><au>Biela, Jurgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-Dimensional Modeling of a Nanosecond Pulsed Discharge</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>157807</spage><epage>157821</epage><pages>157807-157821</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article proposes a 0D model for Nanosecond Pulsed Discharges (NPD). The model incorporates the high-frequency transmission line, a lumped equivalent circuit for the load, a two-temperature model for heavy particles and electrons, and an ionization scheme. The load impedance is modeled as a stray capacitance in parallel with a stray inductance and a time-varying electrical resistance, which depends on the plasma radius and electron number density. The ionization mechanism used to simulate the electron number density includes the impact ionization of N2 and O2 and two- and three-body attachments on O2, all dependent on the applied electric field and gas temperature. The temperature variation is calculated using the energy conservation equation, with electrical power as the source. The model is tested against current and voltage measurements of NPDs in sub-mm gaps at pressures ranging from 2 to 8 bar. The comparison of simulation results with experimental data shows that the plasma's electrical resistance rapidly drops to low values within approximately 1-2 ns after breakdown. This drop is attributed to the formation of a fully ionized micrometer-sized thermal spark, a conclusion supported by optical emission spectroscopy measurements. This model is intended for experimental plasma researchers seeking a simple tool to understand plasma states through basic electrical measurements and for electrical engineers needing insights into varying load impedance, a crucial parameter for pulse generator design.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3486583</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9099-6486</orcidid><orcidid>https://orcid.org/0000-0003-2289-7608</orcidid><orcidid>https://orcid.org/0000-0002-2201-7327</orcidid><orcidid>https://orcid.org/0000-0001-8511-8670</orcidid><orcidid>https://orcid.org/0000-0001-7787-3748</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.157807-157821
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3486583
source IEEE Xplore Open Access Journals
subjects Discharges (electric)
Electrons
ignition
Integrated circuit modeling
Ionization
Load modeling
Mathematical models
Nanosecond pulsed discharge
non-equilibrium plasma
NPD
Plasma temperature
Plasmas
spark-ignition engines
Sparks
thermal spark
transient plasma
Voltage measurement
title Zero-Dimensional Modeling of a Nanosecond Pulsed Discharge
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A50%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-Dimensional%20Modeling%20of%20a%20Nanosecond%20Pulsed%20Discharge&rft.jtitle=IEEE%20access&rft.au=Balmelli,%20Michelangelo&rft.date=2024&rft.volume=12&rft.spage=157807&rft.epage=157821&rft.pages=157807-157821&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3486583&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_1d6a07e9d62d41a0ba10d4a33cc3bd53%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-be8006d9a03677ceb89073851a23d5d6c8c11e2899997baf74f720f71f74050f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10735160&rfr_iscdi=true