Loading…

Compact GaN HEMT Power Amplifier MMIC Delivering Over 40 W for Ku-Band Applications

This paper presents the design and implementation of a high-power amplifier (HPA) using a 250-nm gallium nitride (GaN) high electron mobility transistor (HEMT) process on a silicon carbide substrate. The HPA is engineered to optimize both output power and power density relative to chip size. The 1st...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.180415-180421
Main Authors: Jang, Yeongmin, Choe, Wonseok, Kim, Minchul, Lee, Youngwan, Jeong, Jinho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-ce0c5680606e9a415a61c867387b21e50ceb2bf9b7f61124bce86eaef66582d23
container_end_page 180421
container_issue
container_start_page 180415
container_title IEEE access
container_volume 12
creator Jang, Yeongmin
Choe, Wonseok
Kim, Minchul
Lee, Youngwan
Jeong, Jinho
description This paper presents the design and implementation of a high-power amplifier (HPA) using a 250-nm gallium nitride (GaN) high electron mobility transistor (HEMT) process on a silicon carbide substrate. The HPA is engineered to optimize both output power and power density relative to chip size. The 1st and 2nd drive stages utilize individual source via transistors (ISV TRs) for high gain and efficiency, while the output stage employs outside source via transistors (OSV TRs) to achieve high power density. The output matching network is initially designed for a unit TR with a high impedance transformation ratio of 114 and then expanded to a 16-way binary power combining circuit. RC stabilizers with shunt inductors are tailored in the input and interstage matching networks to address the very low input impedance of the drive stage TRs. These stabilizers effectively increase the input impedance of the TRs. The bias circuit is designed with a DC bus-bar structure, enhancing flexibility for large-scale power combining. The fabricated HPA demonstrated a maximum small-signal gain of 26.3 dB at 16.2 GHz and a 3-dB bandwidth ranging from 15.1 to 17.7 GHz. It also achieved an output power of 46.1 dBm (40.7 W) under pulsed operation from 16.0 to 16.75 GHz with a drain voltage of 28 V. When the drain voltage was increased to 32 V, it reached a maximum output power of 63 W at 16.5 GHz, demonstrating an excellent power density of 2.03 W/mm2 per chip area.
doi_str_mv 10.1109/ACCESS.2024.3508779
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3508779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10771749</ieee_id><doaj_id>oai_doaj_org_article_6f1db79871ed4804a6439b7aeac19ee3</doaj_id><sourcerecordid>3143028826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-ce0c5680606e9a415a61c867387b21e50ceb2bf9b7f61124bce86eaef66582d23</originalsourceid><addsrcrecordid>eNpNUU1Lw0AUDKKgaH-BHhY8p-5X9uNYY9WiVaGKx2WzeZEtbTduUsV_72pE-i7zGGbmPZgsOyV4TAjWF5OynC4WY4opH7MCKyn1XnZEidA5K5jY39kPs1HXLXEalahCHmWLMqxb63p0Yx_Q7XT-jJ7CJ0Q0Wbcr3_i0zeezEl3Byn9A9Js39JgQcYxeURMiutvml3ZTo0mb9M72Pmy6k-ygsasORn94nL1cT5_L2_z-8WZWTu5zR5XucwfYFUJhgQVoy0lhBXFKSKZkRQkU2EFFq0ZXshGEUF45UAIsNEIUitaUHWezIbcOdmna6Nc2fplgvfklQnwzNvbercCIhtSV1EoSqLnC3ArOUrAF64gGYCnrfMhqY3jfQtebZdjGTXrfMMIZpkpRkVRsULkYui5C83-VYPNThhnKMD9lmL8ykutscHkA2HFISSTX7BsLT4Kv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143028826</pqid></control><display><type>article</type><title>Compact GaN HEMT Power Amplifier MMIC Delivering Over 40 W for Ku-Band Applications</title><source>IEEE Open Access Journals</source><creator>Jang, Yeongmin ; Choe, Wonseok ; Kim, Minchul ; Lee, Youngwan ; Jeong, Jinho</creator><creatorcontrib>Jang, Yeongmin ; Choe, Wonseok ; Kim, Minchul ; Lee, Youngwan ; Jeong, Jinho</creatorcontrib><description>This paper presents the design and implementation of a high-power amplifier (HPA) using a 250-nm gallium nitride (GaN) high electron mobility transistor (HEMT) process on a silicon carbide substrate. The HPA is engineered to optimize both output power and power density relative to chip size. The 1st and 2nd drive stages utilize individual source via transistors (ISV TRs) for high gain and efficiency, while the output stage employs outside source via transistors (OSV TRs) to achieve high power density. The output matching network is initially designed for a unit TR with a high impedance transformation ratio of 114 and then expanded to a 16-way binary power combining circuit. RC stabilizers with shunt inductors are tailored in the input and interstage matching networks to address the very low input impedance of the drive stage TRs. These stabilizers effectively increase the input impedance of the TRs. The bias circuit is designed with a DC bus-bar structure, enhancing flexibility for large-scale power combining. The fabricated HPA demonstrated a maximum small-signal gain of 26.3 dB at 16.2 GHz and a 3-dB bandwidth ranging from 15.1 to 17.7 GHz. It also achieved an output power of 46.1 dBm (40.7 W) under pulsed operation from 16.0 to 16.75 GHz with a drain voltage of 28 V. When the drain voltage was increased to 32 V, it reached a maximum output power of 63 W at 16.5 GHz, demonstrating an excellent power density of 2.03 W/mm2 per chip area.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3508779</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Density measurement ; Electric potential ; Gain ; Gallium nitride ; Gallium nitrides ; GaN HEMT ; High electron mobility transistors ; High gain ; High impedance ; Impedance ; Impedance matching ; Inductors ; Input impedance ; Logic gates ; MMIC (circuits) ; output power ; power amplifier ; Power amplifiers ; power combining ; power density ; Power generation ; Power system measurements ; Semiconductor devices ; Shunts (electrical) ; Silicon carbide ; Silicon substrates ; Transistors ; Voltage</subject><ispartof>IEEE access, 2024, Vol.12, p.180415-180421</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-ce0c5680606e9a415a61c867387b21e50ceb2bf9b7f61124bce86eaef66582d23</cites><orcidid>0000-0003-2487-6958 ; 0000-0002-1407-3222 ; 0009-0009-5145-8314 ; 0000-0001-7155-042X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10771749$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Jang, Yeongmin</creatorcontrib><creatorcontrib>Choe, Wonseok</creatorcontrib><creatorcontrib>Kim, Minchul</creatorcontrib><creatorcontrib>Lee, Youngwan</creatorcontrib><creatorcontrib>Jeong, Jinho</creatorcontrib><title>Compact GaN HEMT Power Amplifier MMIC Delivering Over 40 W for Ku-Band Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents the design and implementation of a high-power amplifier (HPA) using a 250-nm gallium nitride (GaN) high electron mobility transistor (HEMT) process on a silicon carbide substrate. The HPA is engineered to optimize both output power and power density relative to chip size. The 1st and 2nd drive stages utilize individual source via transistors (ISV TRs) for high gain and efficiency, while the output stage employs outside source via transistors (OSV TRs) to achieve high power density. The output matching network is initially designed for a unit TR with a high impedance transformation ratio of 114 and then expanded to a 16-way binary power combining circuit. RC stabilizers with shunt inductors are tailored in the input and interstage matching networks to address the very low input impedance of the drive stage TRs. These stabilizers effectively increase the input impedance of the TRs. The bias circuit is designed with a DC bus-bar structure, enhancing flexibility for large-scale power combining. The fabricated HPA demonstrated a maximum small-signal gain of 26.3 dB at 16.2 GHz and a 3-dB bandwidth ranging from 15.1 to 17.7 GHz. It also achieved an output power of 46.1 dBm (40.7 W) under pulsed operation from 16.0 to 16.75 GHz with a drain voltage of 28 V. When the drain voltage was increased to 32 V, it reached a maximum output power of 63 W at 16.5 GHz, demonstrating an excellent power density of 2.03 W/mm2 per chip area.</description><subject>Density measurement</subject><subject>Electric potential</subject><subject>Gain</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>GaN HEMT</subject><subject>High electron mobility transistors</subject><subject>High gain</subject><subject>High impedance</subject><subject>Impedance</subject><subject>Impedance matching</subject><subject>Inductors</subject><subject>Input impedance</subject><subject>Logic gates</subject><subject>MMIC (circuits)</subject><subject>output power</subject><subject>power amplifier</subject><subject>Power amplifiers</subject><subject>power combining</subject><subject>power density</subject><subject>Power generation</subject><subject>Power system measurements</subject><subject>Semiconductor devices</subject><subject>Shunts (electrical)</subject><subject>Silicon carbide</subject><subject>Silicon substrates</subject><subject>Transistors</subject><subject>Voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AUDKKgaH-BHhY8p-5X9uNYY9WiVaGKx2WzeZEtbTduUsV_72pE-i7zGGbmPZgsOyV4TAjWF5OynC4WY4opH7MCKyn1XnZEidA5K5jY39kPs1HXLXEalahCHmWLMqxb63p0Yx_Q7XT-jJ7CJ0Q0Wbcr3_i0zeezEl3Byn9A9Js39JgQcYxeURMiutvml3ZTo0mb9M72Pmy6k-ygsasORn94nL1cT5_L2_z-8WZWTu5zR5XucwfYFUJhgQVoy0lhBXFKSKZkRQkU2EFFq0ZXshGEUF45UAIsNEIUitaUHWezIbcOdmna6Nc2fplgvfklQnwzNvbercCIhtSV1EoSqLnC3ArOUrAF64gGYCnrfMhqY3jfQtebZdjGTXrfMMIZpkpRkVRsULkYui5C83-VYPNThhnKMD9lmL8ykutscHkA2HFISSTX7BsLT4Kv</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jang, Yeongmin</creator><creator>Choe, Wonseok</creator><creator>Kim, Minchul</creator><creator>Lee, Youngwan</creator><creator>Jeong, Jinho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2487-6958</orcidid><orcidid>https://orcid.org/0000-0002-1407-3222</orcidid><orcidid>https://orcid.org/0009-0009-5145-8314</orcidid><orcidid>https://orcid.org/0000-0001-7155-042X</orcidid></search><sort><creationdate>2024</creationdate><title>Compact GaN HEMT Power Amplifier MMIC Delivering Over 40 W for Ku-Band Applications</title><author>Jang, Yeongmin ; Choe, Wonseok ; Kim, Minchul ; Lee, Youngwan ; Jeong, Jinho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-ce0c5680606e9a415a61c867387b21e50ceb2bf9b7f61124bce86eaef66582d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Density measurement</topic><topic>Electric potential</topic><topic>Gain</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>GaN HEMT</topic><topic>High electron mobility transistors</topic><topic>High gain</topic><topic>High impedance</topic><topic>Impedance</topic><topic>Impedance matching</topic><topic>Inductors</topic><topic>Input impedance</topic><topic>Logic gates</topic><topic>MMIC (circuits)</topic><topic>output power</topic><topic>power amplifier</topic><topic>Power amplifiers</topic><topic>power combining</topic><topic>power density</topic><topic>Power generation</topic><topic>Power system measurements</topic><topic>Semiconductor devices</topic><topic>Shunts (electrical)</topic><topic>Silicon carbide</topic><topic>Silicon substrates</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Yeongmin</creatorcontrib><creatorcontrib>Choe, Wonseok</creatorcontrib><creatorcontrib>Kim, Minchul</creatorcontrib><creatorcontrib>Lee, Youngwan</creatorcontrib><creatorcontrib>Jeong, Jinho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Yeongmin</au><au>Choe, Wonseok</au><au>Kim, Minchul</au><au>Lee, Youngwan</au><au>Jeong, Jinho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact GaN HEMT Power Amplifier MMIC Delivering Over 40 W for Ku-Band Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>180415</spage><epage>180421</epage><pages>180415-180421</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents the design and implementation of a high-power amplifier (HPA) using a 250-nm gallium nitride (GaN) high electron mobility transistor (HEMT) process on a silicon carbide substrate. The HPA is engineered to optimize both output power and power density relative to chip size. The 1st and 2nd drive stages utilize individual source via transistors (ISV TRs) for high gain and efficiency, while the output stage employs outside source via transistors (OSV TRs) to achieve high power density. The output matching network is initially designed for a unit TR with a high impedance transformation ratio of 114 and then expanded to a 16-way binary power combining circuit. RC stabilizers with shunt inductors are tailored in the input and interstage matching networks to address the very low input impedance of the drive stage TRs. These stabilizers effectively increase the input impedance of the TRs. The bias circuit is designed with a DC bus-bar structure, enhancing flexibility for large-scale power combining. The fabricated HPA demonstrated a maximum small-signal gain of 26.3 dB at 16.2 GHz and a 3-dB bandwidth ranging from 15.1 to 17.7 GHz. It also achieved an output power of 46.1 dBm (40.7 W) under pulsed operation from 16.0 to 16.75 GHz with a drain voltage of 28 V. When the drain voltage was increased to 32 V, it reached a maximum output power of 63 W at 16.5 GHz, demonstrating an excellent power density of 2.03 W/mm2 per chip area.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3508779</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2487-6958</orcidid><orcidid>https://orcid.org/0000-0002-1407-3222</orcidid><orcidid>https://orcid.org/0009-0009-5145-8314</orcidid><orcidid>https://orcid.org/0000-0001-7155-042X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.180415-180421
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3508779
source IEEE Open Access Journals
subjects Density measurement
Electric potential
Gain
Gallium nitride
Gallium nitrides
GaN HEMT
High electron mobility transistors
High gain
High impedance
Impedance
Impedance matching
Inductors
Input impedance
Logic gates
MMIC (circuits)
output power
power amplifier
Power amplifiers
power combining
power density
Power generation
Power system measurements
Semiconductor devices
Shunts (electrical)
Silicon carbide
Silicon substrates
Transistors
Voltage
title Compact GaN HEMT Power Amplifier MMIC Delivering Over 40 W for Ku-Band Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20GaN%20HEMT%20Power%20Amplifier%20MMIC%20Delivering%20Over%2040%20W%20for%20Ku-Band%20Applications&rft.jtitle=IEEE%20access&rft.au=Jang,%20Yeongmin&rft.date=2024&rft.volume=12&rft.spage=180415&rft.epage=180421&rft.pages=180415-180421&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3508779&rft_dat=%3Cproquest_cross%3E3143028826%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-ce0c5680606e9a415a61c867387b21e50ceb2bf9b7f61124bce86eaef66582d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3143028826&rft_id=info:pmid/&rft_ieee_id=10771749&rfr_iscdi=true