Loading…
Compact GaN HEMT Power Amplifier MMIC Delivering Over 40 W for Ku-Band Applications
This paper presents the design and implementation of a high-power amplifier (HPA) using a 250-nm gallium nitride (GaN) high electron mobility transistor (HEMT) process on a silicon carbide substrate. The HPA is engineered to optimize both output power and power density relative to chip size. The 1st...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.180415-180421 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-ce0c5680606e9a415a61c867387b21e50ceb2bf9b7f61124bce86eaef66582d23 |
container_end_page | 180421 |
container_issue | |
container_start_page | 180415 |
container_title | IEEE access |
container_volume | 12 |
creator | Jang, Yeongmin Choe, Wonseok Kim, Minchul Lee, Youngwan Jeong, Jinho |
description | This paper presents the design and implementation of a high-power amplifier (HPA) using a 250-nm gallium nitride (GaN) high electron mobility transistor (HEMT) process on a silicon carbide substrate. The HPA is engineered to optimize both output power and power density relative to chip size. The 1st and 2nd drive stages utilize individual source via transistors (ISV TRs) for high gain and efficiency, while the output stage employs outside source via transistors (OSV TRs) to achieve high power density. The output matching network is initially designed for a unit TR with a high impedance transformation ratio of 114 and then expanded to a 16-way binary power combining circuit. RC stabilizers with shunt inductors are tailored in the input and interstage matching networks to address the very low input impedance of the drive stage TRs. These stabilizers effectively increase the input impedance of the TRs. The bias circuit is designed with a DC bus-bar structure, enhancing flexibility for large-scale power combining. The fabricated HPA demonstrated a maximum small-signal gain of 26.3 dB at 16.2 GHz and a 3-dB bandwidth ranging from 15.1 to 17.7 GHz. It also achieved an output power of 46.1 dBm (40.7 W) under pulsed operation from 16.0 to 16.75 GHz with a drain voltage of 28 V. When the drain voltage was increased to 32 V, it reached a maximum output power of 63 W at 16.5 GHz, demonstrating an excellent power density of 2.03 W/mm2 per chip area. |
doi_str_mv | 10.1109/ACCESS.2024.3508779 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3508779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10771749</ieee_id><doaj_id>oai_doaj_org_article_6f1db79871ed4804a6439b7aeac19ee3</doaj_id><sourcerecordid>3143028826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-ce0c5680606e9a415a61c867387b21e50ceb2bf9b7f61124bce86eaef66582d23</originalsourceid><addsrcrecordid>eNpNUU1Lw0AUDKKgaH-BHhY8p-5X9uNYY9WiVaGKx2WzeZEtbTduUsV_72pE-i7zGGbmPZgsOyV4TAjWF5OynC4WY4opH7MCKyn1XnZEidA5K5jY39kPs1HXLXEalahCHmWLMqxb63p0Yx_Q7XT-jJ7CJ0Q0Wbcr3_i0zeezEl3Byn9A9Js39JgQcYxeURMiutvml3ZTo0mb9M72Pmy6k-ygsasORn94nL1cT5_L2_z-8WZWTu5zR5XucwfYFUJhgQVoy0lhBXFKSKZkRQkU2EFFq0ZXshGEUF45UAIsNEIUitaUHWezIbcOdmna6Nc2fplgvfklQnwzNvbercCIhtSV1EoSqLnC3ArOUrAF64gGYCnrfMhqY3jfQtebZdjGTXrfMMIZpkpRkVRsULkYui5C83-VYPNThhnKMD9lmL8ykutscHkA2HFISSTX7BsLT4Kv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143028826</pqid></control><display><type>article</type><title>Compact GaN HEMT Power Amplifier MMIC Delivering Over 40 W for Ku-Band Applications</title><source>IEEE Open Access Journals</source><creator>Jang, Yeongmin ; Choe, Wonseok ; Kim, Minchul ; Lee, Youngwan ; Jeong, Jinho</creator><creatorcontrib>Jang, Yeongmin ; Choe, Wonseok ; Kim, Minchul ; Lee, Youngwan ; Jeong, Jinho</creatorcontrib><description>This paper presents the design and implementation of a high-power amplifier (HPA) using a 250-nm gallium nitride (GaN) high electron mobility transistor (HEMT) process on a silicon carbide substrate. The HPA is engineered to optimize both output power and power density relative to chip size. The 1st and 2nd drive stages utilize individual source via transistors (ISV TRs) for high gain and efficiency, while the output stage employs outside source via transistors (OSV TRs) to achieve high power density. The output matching network is initially designed for a unit TR with a high impedance transformation ratio of 114 and then expanded to a 16-way binary power combining circuit. RC stabilizers with shunt inductors are tailored in the input and interstage matching networks to address the very low input impedance of the drive stage TRs. These stabilizers effectively increase the input impedance of the TRs. The bias circuit is designed with a DC bus-bar structure, enhancing flexibility for large-scale power combining. The fabricated HPA demonstrated a maximum small-signal gain of 26.3 dB at 16.2 GHz and a 3-dB bandwidth ranging from 15.1 to 17.7 GHz. It also achieved an output power of 46.1 dBm (40.7 W) under pulsed operation from 16.0 to 16.75 GHz with a drain voltage of 28 V. When the drain voltage was increased to 32 V, it reached a maximum output power of 63 W at 16.5 GHz, demonstrating an excellent power density of 2.03 W/mm2 per chip area.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3508779</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Density measurement ; Electric potential ; Gain ; Gallium nitride ; Gallium nitrides ; GaN HEMT ; High electron mobility transistors ; High gain ; High impedance ; Impedance ; Impedance matching ; Inductors ; Input impedance ; Logic gates ; MMIC (circuits) ; output power ; power amplifier ; Power amplifiers ; power combining ; power density ; Power generation ; Power system measurements ; Semiconductor devices ; Shunts (electrical) ; Silicon carbide ; Silicon substrates ; Transistors ; Voltage</subject><ispartof>IEEE access, 2024, Vol.12, p.180415-180421</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-ce0c5680606e9a415a61c867387b21e50ceb2bf9b7f61124bce86eaef66582d23</cites><orcidid>0000-0003-2487-6958 ; 0000-0002-1407-3222 ; 0009-0009-5145-8314 ; 0000-0001-7155-042X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10771749$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Jang, Yeongmin</creatorcontrib><creatorcontrib>Choe, Wonseok</creatorcontrib><creatorcontrib>Kim, Minchul</creatorcontrib><creatorcontrib>Lee, Youngwan</creatorcontrib><creatorcontrib>Jeong, Jinho</creatorcontrib><title>Compact GaN HEMT Power Amplifier MMIC Delivering Over 40 W for Ku-Band Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents the design and implementation of a high-power amplifier (HPA) using a 250-nm gallium nitride (GaN) high electron mobility transistor (HEMT) process on a silicon carbide substrate. The HPA is engineered to optimize both output power and power density relative to chip size. The 1st and 2nd drive stages utilize individual source via transistors (ISV TRs) for high gain and efficiency, while the output stage employs outside source via transistors (OSV TRs) to achieve high power density. The output matching network is initially designed for a unit TR with a high impedance transformation ratio of 114 and then expanded to a 16-way binary power combining circuit. RC stabilizers with shunt inductors are tailored in the input and interstage matching networks to address the very low input impedance of the drive stage TRs. These stabilizers effectively increase the input impedance of the TRs. The bias circuit is designed with a DC bus-bar structure, enhancing flexibility for large-scale power combining. The fabricated HPA demonstrated a maximum small-signal gain of 26.3 dB at 16.2 GHz and a 3-dB bandwidth ranging from 15.1 to 17.7 GHz. It also achieved an output power of 46.1 dBm (40.7 W) under pulsed operation from 16.0 to 16.75 GHz with a drain voltage of 28 V. When the drain voltage was increased to 32 V, it reached a maximum output power of 63 W at 16.5 GHz, demonstrating an excellent power density of 2.03 W/mm2 per chip area.</description><subject>Density measurement</subject><subject>Electric potential</subject><subject>Gain</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>GaN HEMT</subject><subject>High electron mobility transistors</subject><subject>High gain</subject><subject>High impedance</subject><subject>Impedance</subject><subject>Impedance matching</subject><subject>Inductors</subject><subject>Input impedance</subject><subject>Logic gates</subject><subject>MMIC (circuits)</subject><subject>output power</subject><subject>power amplifier</subject><subject>Power amplifiers</subject><subject>power combining</subject><subject>power density</subject><subject>Power generation</subject><subject>Power system measurements</subject><subject>Semiconductor devices</subject><subject>Shunts (electrical)</subject><subject>Silicon carbide</subject><subject>Silicon substrates</subject><subject>Transistors</subject><subject>Voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AUDKKgaH-BHhY8p-5X9uNYY9WiVaGKx2WzeZEtbTduUsV_72pE-i7zGGbmPZgsOyV4TAjWF5OynC4WY4opH7MCKyn1XnZEidA5K5jY39kPs1HXLXEalahCHmWLMqxb63p0Yx_Q7XT-jJ7CJ0Q0Wbcr3_i0zeezEl3Byn9A9Js39JgQcYxeURMiutvml3ZTo0mb9M72Pmy6k-ygsasORn94nL1cT5_L2_z-8WZWTu5zR5XucwfYFUJhgQVoy0lhBXFKSKZkRQkU2EFFq0ZXshGEUF45UAIsNEIUitaUHWezIbcOdmna6Nc2fplgvfklQnwzNvbercCIhtSV1EoSqLnC3ArOUrAF64gGYCnrfMhqY3jfQtebZdjGTXrfMMIZpkpRkVRsULkYui5C83-VYPNThhnKMD9lmL8ykutscHkA2HFISSTX7BsLT4Kv</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Jang, Yeongmin</creator><creator>Choe, Wonseok</creator><creator>Kim, Minchul</creator><creator>Lee, Youngwan</creator><creator>Jeong, Jinho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2487-6958</orcidid><orcidid>https://orcid.org/0000-0002-1407-3222</orcidid><orcidid>https://orcid.org/0009-0009-5145-8314</orcidid><orcidid>https://orcid.org/0000-0001-7155-042X</orcidid></search><sort><creationdate>2024</creationdate><title>Compact GaN HEMT Power Amplifier MMIC Delivering Over 40 W for Ku-Band Applications</title><author>Jang, Yeongmin ; Choe, Wonseok ; Kim, Minchul ; Lee, Youngwan ; Jeong, Jinho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-ce0c5680606e9a415a61c867387b21e50ceb2bf9b7f61124bce86eaef66582d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Density measurement</topic><topic>Electric potential</topic><topic>Gain</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>GaN HEMT</topic><topic>High electron mobility transistors</topic><topic>High gain</topic><topic>High impedance</topic><topic>Impedance</topic><topic>Impedance matching</topic><topic>Inductors</topic><topic>Input impedance</topic><topic>Logic gates</topic><topic>MMIC (circuits)</topic><topic>output power</topic><topic>power amplifier</topic><topic>Power amplifiers</topic><topic>power combining</topic><topic>power density</topic><topic>Power generation</topic><topic>Power system measurements</topic><topic>Semiconductor devices</topic><topic>Shunts (electrical)</topic><topic>Silicon carbide</topic><topic>Silicon substrates</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Yeongmin</creatorcontrib><creatorcontrib>Choe, Wonseok</creatorcontrib><creatorcontrib>Kim, Minchul</creatorcontrib><creatorcontrib>Lee, Youngwan</creatorcontrib><creatorcontrib>Jeong, Jinho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Yeongmin</au><au>Choe, Wonseok</au><au>Kim, Minchul</au><au>Lee, Youngwan</au><au>Jeong, Jinho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact GaN HEMT Power Amplifier MMIC Delivering Over 40 W for Ku-Band Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>180415</spage><epage>180421</epage><pages>180415-180421</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents the design and implementation of a high-power amplifier (HPA) using a 250-nm gallium nitride (GaN) high electron mobility transistor (HEMT) process on a silicon carbide substrate. The HPA is engineered to optimize both output power and power density relative to chip size. The 1st and 2nd drive stages utilize individual source via transistors (ISV TRs) for high gain and efficiency, while the output stage employs outside source via transistors (OSV TRs) to achieve high power density. The output matching network is initially designed for a unit TR with a high impedance transformation ratio of 114 and then expanded to a 16-way binary power combining circuit. RC stabilizers with shunt inductors are tailored in the input and interstage matching networks to address the very low input impedance of the drive stage TRs. These stabilizers effectively increase the input impedance of the TRs. The bias circuit is designed with a DC bus-bar structure, enhancing flexibility for large-scale power combining. The fabricated HPA demonstrated a maximum small-signal gain of 26.3 dB at 16.2 GHz and a 3-dB bandwidth ranging from 15.1 to 17.7 GHz. It also achieved an output power of 46.1 dBm (40.7 W) under pulsed operation from 16.0 to 16.75 GHz with a drain voltage of 28 V. When the drain voltage was increased to 32 V, it reached a maximum output power of 63 W at 16.5 GHz, demonstrating an excellent power density of 2.03 W/mm2 per chip area.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3508779</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2487-6958</orcidid><orcidid>https://orcid.org/0000-0002-1407-3222</orcidid><orcidid>https://orcid.org/0009-0009-5145-8314</orcidid><orcidid>https://orcid.org/0000-0001-7155-042X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.180415-180421 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3508779 |
source | IEEE Open Access Journals |
subjects | Density measurement Electric potential Gain Gallium nitride Gallium nitrides GaN HEMT High electron mobility transistors High gain High impedance Impedance Impedance matching Inductors Input impedance Logic gates MMIC (circuits) output power power amplifier Power amplifiers power combining power density Power generation Power system measurements Semiconductor devices Shunts (electrical) Silicon carbide Silicon substrates Transistors Voltage |
title | Compact GaN HEMT Power Amplifier MMIC Delivering Over 40 W for Ku-Band Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T11%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20GaN%20HEMT%20Power%20Amplifier%20MMIC%20Delivering%20Over%2040%20W%20for%20Ku-Band%20Applications&rft.jtitle=IEEE%20access&rft.au=Jang,%20Yeongmin&rft.date=2024&rft.volume=12&rft.spage=180415&rft.epage=180421&rft.pages=180415-180421&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3508779&rft_dat=%3Cproquest_cross%3E3143028826%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-ce0c5680606e9a415a61c867387b21e50ceb2bf9b7f61124bce86eaef66582d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3143028826&rft_id=info:pmid/&rft_ieee_id=10771749&rfr_iscdi=true |