Loading…

Gas Leak Real-time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms

Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those with small flow rates by only utilizing economical equipments. In this paper, we present a strategy for automating real-time identification a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2025-01, Vol.13, p.1-1
Main Authors: Yan, Man, Li, Zhou, Dong, Zheng, Liu, Yiming, Chen, Liyun, Wu, Xiaosong, Wu, Lijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1317-ac04baba71a0335fa4dfb6eb2d955934317df1925bd2aea8cfdba17d45b20dcb3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 13
creator Yan, Man
Li, Zhou
Dong, Zheng
Liu, Yiming
Chen, Liyun
Wu, Xiaosong
Wu, Lijun
description Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those with small flow rates by only utilizing economical equipments. In this paper, we present a strategy for automating real-time identification and quantification of gases in the mid-infrared band by combining an infrared camera combined with a series optimized algorithms. A basic network DeepLabV3+ is first modified by replacing its Xception backbone with MobileNetv2 for real-time gas detection and segmentation. Then special attention mechanisms tailored to the characteristics of the gas are added into the network to enhance the perception and recognition of the gas edges. The optimized Kmeans clustering algorithm is integrated to identify the Region of Interest (ROI) in the image containing the target gas. The quantification of the volume flow rate within the ROI is realized by integrating the radiation transfer model with the optical flow method. The experimental results indicate that the quantification limit of the gas flow rate can reach 0.01 L/min, which is comparable to that obtained by the methods with complicated instruments. Our detection and quantification strategy can find vast applications in hazardous gas monitoring field.
doi_str_mv 10.1109/ACCESS.2025.3525764
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2025_3525764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10824807</ieee_id><doaj_id>oai_doaj_org_article_a974fe9a3526408fa200c8050a209b44</doaj_id><sourcerecordid>oai_doaj_org_article_a974fe9a3526408fa200c8050a209b44</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1317-ac04baba71a0335fa4dfb6eb2d955934317df1925bd2aea8cfdba17d45b20dcb3</originalsourceid><addsrcrecordid>eNpNkclOw0AQRC0EEhHkC-DgH3CY1cvRhCREioQgwHXUs5kJXtDYAfH3TBah9GVKb7rq0BVFNxhNMEbFXTmdztbrCUGETygnPEvZWTQiOC0Syml6fqIvo3Hfb1CYPCCejaJmAX28MvAZvxiok8E1Jn4wg1GD69oYWh2_d_U2wHnd_cTPW2gHZ52C_fc99EbHQSxb68EHvWygcm21N5b6G1oVYFlXnXfDR9NfRxcW6t6Mj-9V9DafvU4fk9XTYjktV4nCFGcJKMQkSMgwIEq5BaatTI0kuuC8oCzsaIsLwqUmYCBXVksIjHFJkFaSXkXLQ67uYCO-vGvA_4oOnNiDzlcC_OBUbQQUGbOmgHC5lKHcAkFI5YijIArJWMiihyzlu773xv7nYSR2BYhDAWJXgDgWEFy3B5czxpw4csJylNE_nk6Cdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gas Leak Real-time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms</title><source>IEEE Xplore Open Access Journals</source><creator>Yan, Man ; Li, Zhou ; Dong, Zheng ; Liu, Yiming ; Chen, Liyun ; Wu, Xiaosong ; Wu, Lijun</creator><creatorcontrib>Yan, Man ; Li, Zhou ; Dong, Zheng ; Liu, Yiming ; Chen, Liyun ; Wu, Xiaosong ; Wu, Lijun</creatorcontrib><description>Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those with small flow rates by only utilizing economical equipments. In this paper, we present a strategy for automating real-time identification and quantification of gases in the mid-infrared band by combining an infrared camera combined with a series optimized algorithms. A basic network DeepLabV3+ is first modified by replacing its Xception backbone with MobileNetv2 for real-time gas detection and segmentation. Then special attention mechanisms tailored to the characteristics of the gas are added into the network to enhance the perception and recognition of the gas edges. The optimized Kmeans clustering algorithm is integrated to identify the Region of Interest (ROI) in the image containing the target gas. The quantification of the volume flow rate within the ROI is realized by integrating the radiation transfer model with the optical flow method. The experimental results indicate that the quantification limit of the gas flow rate can reach 0.01 L/min, which is comparable to that obtained by the methods with complicated instruments. Our detection and quantification strategy can find vast applications in hazardous gas monitoring field.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2025.3525764</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Cameras ; Clustering algorithms ; DeeplabV3+ neural network ; Fluid flow ; Gas identification ; Gas lasers ; Gas quantification ; Gases ; Image edge detection ; Kmeans clustering algorithm ; Optical filters ; Optical flow method ; Real-time systems ; Training</subject><ispartof>IEEE access, 2025-01, Vol.13, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1317-ac04baba71a0335fa4dfb6eb2d955934317df1925bd2aea8cfdba17d45b20dcb3</cites><orcidid>0000-0002-0877-0689 ; 0000-0002-2890-9406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10824807$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Yan, Man</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><creatorcontrib>Liu, Yiming</creatorcontrib><creatorcontrib>Chen, Liyun</creatorcontrib><creatorcontrib>Wu, Xiaosong</creatorcontrib><creatorcontrib>Wu, Lijun</creatorcontrib><title>Gas Leak Real-time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms</title><title>IEEE access</title><addtitle>Access</addtitle><description>Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those with small flow rates by only utilizing economical equipments. In this paper, we present a strategy for automating real-time identification and quantification of gases in the mid-infrared band by combining an infrared camera combined with a series optimized algorithms. A basic network DeepLabV3+ is first modified by replacing its Xception backbone with MobileNetv2 for real-time gas detection and segmentation. Then special attention mechanisms tailored to the characteristics of the gas are added into the network to enhance the perception and recognition of the gas edges. The optimized Kmeans clustering algorithm is integrated to identify the Region of Interest (ROI) in the image containing the target gas. The quantification of the volume flow rate within the ROI is realized by integrating the radiation transfer model with the optical flow method. The experimental results indicate that the quantification limit of the gas flow rate can reach 0.01 L/min, which is comparable to that obtained by the methods with complicated instruments. Our detection and quantification strategy can find vast applications in hazardous gas monitoring field.</description><subject>Accuracy</subject><subject>Cameras</subject><subject>Clustering algorithms</subject><subject>DeeplabV3+ neural network</subject><subject>Fluid flow</subject><subject>Gas identification</subject><subject>Gas lasers</subject><subject>Gas quantification</subject><subject>Gases</subject><subject>Image edge detection</subject><subject>Kmeans clustering algorithm</subject><subject>Optical filters</subject><subject>Optical flow method</subject><subject>Real-time systems</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkclOw0AQRC0EEhHkC-DgH3CY1cvRhCREioQgwHXUs5kJXtDYAfH3TBah9GVKb7rq0BVFNxhNMEbFXTmdztbrCUGETygnPEvZWTQiOC0Syml6fqIvo3Hfb1CYPCCejaJmAX28MvAZvxiok8E1Jn4wg1GD69oYWh2_d_U2wHnd_cTPW2gHZ52C_fc99EbHQSxb68EHvWygcm21N5b6G1oVYFlXnXfDR9NfRxcW6t6Mj-9V9DafvU4fk9XTYjktV4nCFGcJKMQkSMgwIEq5BaatTI0kuuC8oCzsaIsLwqUmYCBXVksIjHFJkFaSXkXLQ67uYCO-vGvA_4oOnNiDzlcC_OBUbQQUGbOmgHC5lKHcAkFI5YijIArJWMiihyzlu773xv7nYSR2BYhDAWJXgDgWEFy3B5czxpw4csJylNE_nk6Cdg</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Yan, Man</creator><creator>Li, Zhou</creator><creator>Dong, Zheng</creator><creator>Liu, Yiming</creator><creator>Chen, Liyun</creator><creator>Wu, Xiaosong</creator><creator>Wu, Lijun</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0877-0689</orcidid><orcidid>https://orcid.org/0000-0002-2890-9406</orcidid></search><sort><creationdate>20250101</creationdate><title>Gas Leak Real-time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms</title><author>Yan, Man ; Li, Zhou ; Dong, Zheng ; Liu, Yiming ; Chen, Liyun ; Wu, Xiaosong ; Wu, Lijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1317-ac04baba71a0335fa4dfb6eb2d955934317df1925bd2aea8cfdba17d45b20dcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Cameras</topic><topic>Clustering algorithms</topic><topic>DeeplabV3+ neural network</topic><topic>Fluid flow</topic><topic>Gas identification</topic><topic>Gas lasers</topic><topic>Gas quantification</topic><topic>Gases</topic><topic>Image edge detection</topic><topic>Kmeans clustering algorithm</topic><topic>Optical filters</topic><topic>Optical flow method</topic><topic>Real-time systems</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Man</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><creatorcontrib>Liu, Yiming</creatorcontrib><creatorcontrib>Chen, Liyun</creatorcontrib><creatorcontrib>Wu, Xiaosong</creatorcontrib><creatorcontrib>Wu, Lijun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Man</au><au>Li, Zhou</au><au>Dong, Zheng</au><au>Liu, Yiming</au><au>Chen, Liyun</au><au>Wu, Xiaosong</au><au>Wu, Lijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas Leak Real-time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>13</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those with small flow rates by only utilizing economical equipments. In this paper, we present a strategy for automating real-time identification and quantification of gases in the mid-infrared band by combining an infrared camera combined with a series optimized algorithms. A basic network DeepLabV3+ is first modified by replacing its Xception backbone with MobileNetv2 for real-time gas detection and segmentation. Then special attention mechanisms tailored to the characteristics of the gas are added into the network to enhance the perception and recognition of the gas edges. The optimized Kmeans clustering algorithm is integrated to identify the Region of Interest (ROI) in the image containing the target gas. The quantification of the volume flow rate within the ROI is realized by integrating the radiation transfer model with the optical flow method. The experimental results indicate that the quantification limit of the gas flow rate can reach 0.01 L/min, which is comparable to that obtained by the methods with complicated instruments. Our detection and quantification strategy can find vast applications in hazardous gas monitoring field.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2025.3525764</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0877-0689</orcidid><orcidid>https://orcid.org/0000-0002-2890-9406</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2025-01, Vol.13, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2025_3525764
source IEEE Xplore Open Access Journals
subjects Accuracy
Cameras
Clustering algorithms
DeeplabV3+ neural network
Fluid flow
Gas identification
Gas lasers
Gas quantification
Gases
Image edge detection
Kmeans clustering algorithm
Optical filters
Optical flow method
Real-time systems
Training
title Gas Leak Real-time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20Leak%20Real-time%20Detection%20and%20Volume%20Flow%20Quantification%20Based%20on%20Infrared%20Imaging%20and%20Advanced%20Algorithms&rft.jtitle=IEEE%20access&rft.au=Yan,%20Man&rft.date=2025-01-01&rft.volume=13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2025.3525764&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_a974fe9a3526408fa200c8050a209b44%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1317-ac04baba71a0335fa4dfb6eb2d955934317df1925bd2aea8cfdba17d45b20dcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10824807&rfr_iscdi=true