Loading…
Gas Leak Real-time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms
Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those with small flow rates by only utilizing economical equipments. In this paper, we present a strategy for automating real-time identification a...
Saved in:
Published in: | IEEE access 2025-01, Vol.13, p.1-1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1317-ac04baba71a0335fa4dfb6eb2d955934317df1925bd2aea8cfdba17d45b20dcb3 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 13 |
creator | Yan, Man Li, Zhou Dong, Zheng Liu, Yiming Chen, Liyun Wu, Xiaosong Wu, Lijun |
description | Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those with small flow rates by only utilizing economical equipments. In this paper, we present a strategy for automating real-time identification and quantification of gases in the mid-infrared band by combining an infrared camera combined with a series optimized algorithms. A basic network DeepLabV3+ is first modified by replacing its Xception backbone with MobileNetv2 for real-time gas detection and segmentation. Then special attention mechanisms tailored to the characteristics of the gas are added into the network to enhance the perception and recognition of the gas edges. The optimized Kmeans clustering algorithm is integrated to identify the Region of Interest (ROI) in the image containing the target gas. The quantification of the volume flow rate within the ROI is realized by integrating the radiation transfer model with the optical flow method. The experimental results indicate that the quantification limit of the gas flow rate can reach 0.01 L/min, which is comparable to that obtained by the methods with complicated instruments. Our detection and quantification strategy can find vast applications in hazardous gas monitoring field. |
doi_str_mv | 10.1109/ACCESS.2025.3525764 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2025_3525764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10824807</ieee_id><doaj_id>oai_doaj_org_article_a974fe9a3526408fa200c8050a209b44</doaj_id><sourcerecordid>oai_doaj_org_article_a974fe9a3526408fa200c8050a209b44</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1317-ac04baba71a0335fa4dfb6eb2d955934317df1925bd2aea8cfdba17d45b20dcb3</originalsourceid><addsrcrecordid>eNpNkclOw0AQRC0EEhHkC-DgH3CY1cvRhCREioQgwHXUs5kJXtDYAfH3TBah9GVKb7rq0BVFNxhNMEbFXTmdztbrCUGETygnPEvZWTQiOC0Syml6fqIvo3Hfb1CYPCCejaJmAX28MvAZvxiok8E1Jn4wg1GD69oYWh2_d_U2wHnd_cTPW2gHZ52C_fc99EbHQSxb68EHvWygcm21N5b6G1oVYFlXnXfDR9NfRxcW6t6Mj-9V9DafvU4fk9XTYjktV4nCFGcJKMQkSMgwIEq5BaatTI0kuuC8oCzsaIsLwqUmYCBXVksIjHFJkFaSXkXLQ67uYCO-vGvA_4oOnNiDzlcC_OBUbQQUGbOmgHC5lKHcAkFI5YijIArJWMiihyzlu773xv7nYSR2BYhDAWJXgDgWEFy3B5czxpw4csJylNE_nk6Cdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gas Leak Real-time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms</title><source>IEEE Xplore Open Access Journals</source><creator>Yan, Man ; Li, Zhou ; Dong, Zheng ; Liu, Yiming ; Chen, Liyun ; Wu, Xiaosong ; Wu, Lijun</creator><creatorcontrib>Yan, Man ; Li, Zhou ; Dong, Zheng ; Liu, Yiming ; Chen, Liyun ; Wu, Xiaosong ; Wu, Lijun</creatorcontrib><description>Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those with small flow rates by only utilizing economical equipments. In this paper, we present a strategy for automating real-time identification and quantification of gases in the mid-infrared band by combining an infrared camera combined with a series optimized algorithms. A basic network DeepLabV3+ is first modified by replacing its Xception backbone with MobileNetv2 for real-time gas detection and segmentation. Then special attention mechanisms tailored to the characteristics of the gas are added into the network to enhance the perception and recognition of the gas edges. The optimized Kmeans clustering algorithm is integrated to identify the Region of Interest (ROI) in the image containing the target gas. The quantification of the volume flow rate within the ROI is realized by integrating the radiation transfer model with the optical flow method. The experimental results indicate that the quantification limit of the gas flow rate can reach 0.01 L/min, which is comparable to that obtained by the methods with complicated instruments. Our detection and quantification strategy can find vast applications in hazardous gas monitoring field.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2025.3525764</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Cameras ; Clustering algorithms ; DeeplabV3+ neural network ; Fluid flow ; Gas identification ; Gas lasers ; Gas quantification ; Gases ; Image edge detection ; Kmeans clustering algorithm ; Optical filters ; Optical flow method ; Real-time systems ; Training</subject><ispartof>IEEE access, 2025-01, Vol.13, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1317-ac04baba71a0335fa4dfb6eb2d955934317df1925bd2aea8cfdba17d45b20dcb3</cites><orcidid>0000-0002-0877-0689 ; 0000-0002-2890-9406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10824807$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Yan, Man</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><creatorcontrib>Liu, Yiming</creatorcontrib><creatorcontrib>Chen, Liyun</creatorcontrib><creatorcontrib>Wu, Xiaosong</creatorcontrib><creatorcontrib>Wu, Lijun</creatorcontrib><title>Gas Leak Real-time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms</title><title>IEEE access</title><addtitle>Access</addtitle><description>Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those with small flow rates by only utilizing economical equipments. In this paper, we present a strategy for automating real-time identification and quantification of gases in the mid-infrared band by combining an infrared camera combined with a series optimized algorithms. A basic network DeepLabV3+ is first modified by replacing its Xception backbone with MobileNetv2 for real-time gas detection and segmentation. Then special attention mechanisms tailored to the characteristics of the gas are added into the network to enhance the perception and recognition of the gas edges. The optimized Kmeans clustering algorithm is integrated to identify the Region of Interest (ROI) in the image containing the target gas. The quantification of the volume flow rate within the ROI is realized by integrating the radiation transfer model with the optical flow method. The experimental results indicate that the quantification limit of the gas flow rate can reach 0.01 L/min, which is comparable to that obtained by the methods with complicated instruments. Our detection and quantification strategy can find vast applications in hazardous gas monitoring field.</description><subject>Accuracy</subject><subject>Cameras</subject><subject>Clustering algorithms</subject><subject>DeeplabV3+ neural network</subject><subject>Fluid flow</subject><subject>Gas identification</subject><subject>Gas lasers</subject><subject>Gas quantification</subject><subject>Gases</subject><subject>Image edge detection</subject><subject>Kmeans clustering algorithm</subject><subject>Optical filters</subject><subject>Optical flow method</subject><subject>Real-time systems</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkclOw0AQRC0EEhHkC-DgH3CY1cvRhCREioQgwHXUs5kJXtDYAfH3TBah9GVKb7rq0BVFNxhNMEbFXTmdztbrCUGETygnPEvZWTQiOC0Syml6fqIvo3Hfb1CYPCCejaJmAX28MvAZvxiok8E1Jn4wg1GD69oYWh2_d_U2wHnd_cTPW2gHZ52C_fc99EbHQSxb68EHvWygcm21N5b6G1oVYFlXnXfDR9NfRxcW6t6Mj-9V9DafvU4fk9XTYjktV4nCFGcJKMQkSMgwIEq5BaatTI0kuuC8oCzsaIsLwqUmYCBXVksIjHFJkFaSXkXLQ67uYCO-vGvA_4oOnNiDzlcC_OBUbQQUGbOmgHC5lKHcAkFI5YijIArJWMiihyzlu773xv7nYSR2BYhDAWJXgDgWEFy3B5czxpw4csJylNE_nk6Cdg</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Yan, Man</creator><creator>Li, Zhou</creator><creator>Dong, Zheng</creator><creator>Liu, Yiming</creator><creator>Chen, Liyun</creator><creator>Wu, Xiaosong</creator><creator>Wu, Lijun</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0877-0689</orcidid><orcidid>https://orcid.org/0000-0002-2890-9406</orcidid></search><sort><creationdate>20250101</creationdate><title>Gas Leak Real-time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms</title><author>Yan, Man ; Li, Zhou ; Dong, Zheng ; Liu, Yiming ; Chen, Liyun ; Wu, Xiaosong ; Wu, Lijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1317-ac04baba71a0335fa4dfb6eb2d955934317df1925bd2aea8cfdba17d45b20dcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Cameras</topic><topic>Clustering algorithms</topic><topic>DeeplabV3+ neural network</topic><topic>Fluid flow</topic><topic>Gas identification</topic><topic>Gas lasers</topic><topic>Gas quantification</topic><topic>Gases</topic><topic>Image edge detection</topic><topic>Kmeans clustering algorithm</topic><topic>Optical filters</topic><topic>Optical flow method</topic><topic>Real-time systems</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Man</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><creatorcontrib>Dong, Zheng</creatorcontrib><creatorcontrib>Liu, Yiming</creatorcontrib><creatorcontrib>Chen, Liyun</creatorcontrib><creatorcontrib>Wu, Xiaosong</creatorcontrib><creatorcontrib>Wu, Lijun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Man</au><au>Li, Zhou</au><au>Dong, Zheng</au><au>Liu, Yiming</au><au>Chen, Liyun</au><au>Wu, Xiaosong</au><au>Wu, Lijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas Leak Real-time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>13</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those with small flow rates by only utilizing economical equipments. In this paper, we present a strategy for automating real-time identification and quantification of gases in the mid-infrared band by combining an infrared camera combined with a series optimized algorithms. A basic network DeepLabV3+ is first modified by replacing its Xception backbone with MobileNetv2 for real-time gas detection and segmentation. Then special attention mechanisms tailored to the characteristics of the gas are added into the network to enhance the perception and recognition of the gas edges. The optimized Kmeans clustering algorithm is integrated to identify the Region of Interest (ROI) in the image containing the target gas. The quantification of the volume flow rate within the ROI is realized by integrating the radiation transfer model with the optical flow method. The experimental results indicate that the quantification limit of the gas flow rate can reach 0.01 L/min, which is comparable to that obtained by the methods with complicated instruments. Our detection and quantification strategy can find vast applications in hazardous gas monitoring field.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2025.3525764</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0877-0689</orcidid><orcidid>https://orcid.org/0000-0002-2890-9406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2025-01, Vol.13, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2025_3525764 |
source | IEEE Xplore Open Access Journals |
subjects | Accuracy Cameras Clustering algorithms DeeplabV3+ neural network Fluid flow Gas identification Gas lasers Gas quantification Gases Image edge detection Kmeans clustering algorithm Optical filters Optical flow method Real-time systems Training |
title | Gas Leak Real-time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20Leak%20Real-time%20Detection%20and%20Volume%20Flow%20Quantification%20Based%20on%20Infrared%20Imaging%20and%20Advanced%20Algorithms&rft.jtitle=IEEE%20access&rft.au=Yan,%20Man&rft.date=2025-01-01&rft.volume=13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2025.3525764&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_a974fe9a3526408fa200c8050a209b44%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1317-ac04baba71a0335fa4dfb6eb2d955934317df1925bd2aea8cfdba17d45b20dcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10824807&rfr_iscdi=true |