Loading…

Mobile Edge Intelligence for Large Language Models: A Contemporary Survey

On-device large language models (LLMs), referring to running LLMs on edge devices, have raised considerable interest since they are more cost-effective, latency-efficient, and privacy-preserving compared with the cloud paradigm. Nonetheless, the performance of on-device LLMs is intrinsically constra...

Full description

Saved in:
Bibliographic Details
Published in:IEEE Communications surveys and tutorials 2025-01, p.1-1
Main Authors: Qu, Guanqiao, Chen, Qiyuan, Wei, Wei, Lin, Zheng, Chen, Xianhao, Huang, Kaibin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title IEEE Communications surveys and tutorials
container_volume
creator Qu, Guanqiao
Chen, Qiyuan
Wei, Wei
Lin, Zheng
Chen, Xianhao
Huang, Kaibin
description On-device large language models (LLMs), referring to running LLMs on edge devices, have raised considerable interest since they are more cost-effective, latency-efficient, and privacy-preserving compared with the cloud paradigm. Nonetheless, the performance of on-device LLMs is intrinsically constrained by resource limitations on edge devices. Sitting between cloud and on-device AI, mobile edge intelligence (MEI) presents a viable solution by provisioning AI capabilities at the edge of mobile networks. This article provides a contemporary survey on harnessing MEI for LLMs. We begin by illustrating several killer applications to demonstrate the urgent need for deploying LLMs at the network edge. Next, we present the preliminaries of LLMs and MEI, followed by resource-efficient LLM techniques. We then present an architectural overview of MEI for LLMs (MEI4LLM), outlining its core components and how it supports the deployment of LLMs. Subsequently, we delve into various aspects of MEI4LLM, extensively covering edge LLM caching and delivery, edge LLM training, and edge LLM inference. Finally, we identify future research opportunities. We hope this article inspires researchers in the field to leverage mobile edge computing to facilitate LLM deployment, thereby unleashing the potential of LLMs across various privacy-and delay-sensitive applications.
doi_str_mv 10.1109/COMST.2025.3527641
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_COMST_2025_3527641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10835069</ieee_id><sourcerecordid>10_1109_COMST_2025_3527641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1081-8a84aec02ee6d2893cb43a620602f5118e536c2f83c35a954ddbe08a93e9896b3</originalsourceid><addsrcrecordid>eNpNkMFKw0AQhhdRsFZfQDzsC6TO7uxudr2VULWQ0kMr9BY2m0mJpE3ZWKFvb7Q9eJphmO_n52PsUcBECHDP2XKxWk8kSD1BLVOjxBUbSUwxSZXeXLOR0BoTm6abW3bX958ASioHIzZfdGXTEp9VW-Lz_Re1bbOlfSBed5HnPg7n3O-3Rz8si66itn_hU551w-vu0EUfT3x1jN90umc3tW97erjMMft4na2z9yRfvs2zaZ4EAVYk1lvlKYAkMpW0DkOp0BsJBmSthbCk0QRZWwyovdOqqkoC6x2Ss86UOGbynBti1_eR6uIQm93QoxBQ_Moo_mQUvzKKi4wBejpDDRH9AyxqMA5_AKy1Wx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mobile Edge Intelligence for Large Language Models: A Contemporary Survey</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Qu, Guanqiao ; Chen, Qiyuan ; Wei, Wei ; Lin, Zheng ; Chen, Xianhao ; Huang, Kaibin</creator><creatorcontrib>Qu, Guanqiao ; Chen, Qiyuan ; Wei, Wei ; Lin, Zheng ; Chen, Xianhao ; Huang, Kaibin</creatorcontrib><description>On-device large language models (LLMs), referring to running LLMs on edge devices, have raised considerable interest since they are more cost-effective, latency-efficient, and privacy-preserving compared with the cloud paradigm. Nonetheless, the performance of on-device LLMs is intrinsically constrained by resource limitations on edge devices. Sitting between cloud and on-device AI, mobile edge intelligence (MEI) presents a viable solution by provisioning AI capabilities at the edge of mobile networks. This article provides a contemporary survey on harnessing MEI for LLMs. We begin by illustrating several killer applications to demonstrate the urgent need for deploying LLMs at the network edge. Next, we present the preliminaries of LLMs and MEI, followed by resource-efficient LLM techniques. We then present an architectural overview of MEI for LLMs (MEI4LLM), outlining its core components and how it supports the deployment of LLMs. Subsequently, we delve into various aspects of MEI4LLM, extensively covering edge LLM caching and delivery, edge LLM training, and edge LLM inference. Finally, we identify future research opportunities. We hope this article inspires researchers in the field to leverage mobile edge computing to facilitate LLM deployment, thereby unleashing the potential of LLMs across various privacy-and delay-sensitive applications.</description><identifier>ISSN: 1553-877X</identifier><identifier>EISSN: 2373-745X</identifier><identifier>DOI: 10.1109/COMST.2025.3527641</identifier><language>eng</language><publisher>IEEE</publisher><subject>6G mobile communication ; Artificial intelligence ; Bandwidth ; edge intelligence ; foundation models ; Image edge detection ; Internet ; Large language models ; mobile edge computing ; Reviews ; Servers ; split learning ; Surveys ; Training ; Tutorials</subject><ispartof>IEEE Communications surveys and tutorials, 2025-01, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4463-5652 ; 0000-0002-4295-940X ; 0000-0001-8773-4629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10835069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids></links><search><creatorcontrib>Qu, Guanqiao</creatorcontrib><creatorcontrib>Chen, Qiyuan</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Lin, Zheng</creatorcontrib><creatorcontrib>Chen, Xianhao</creatorcontrib><creatorcontrib>Huang, Kaibin</creatorcontrib><title>Mobile Edge Intelligence for Large Language Models: A Contemporary Survey</title><title>IEEE Communications surveys and tutorials</title><addtitle>COMST</addtitle><description>On-device large language models (LLMs), referring to running LLMs on edge devices, have raised considerable interest since they are more cost-effective, latency-efficient, and privacy-preserving compared with the cloud paradigm. Nonetheless, the performance of on-device LLMs is intrinsically constrained by resource limitations on edge devices. Sitting between cloud and on-device AI, mobile edge intelligence (MEI) presents a viable solution by provisioning AI capabilities at the edge of mobile networks. This article provides a contemporary survey on harnessing MEI for LLMs. We begin by illustrating several killer applications to demonstrate the urgent need for deploying LLMs at the network edge. Next, we present the preliminaries of LLMs and MEI, followed by resource-efficient LLM techniques. We then present an architectural overview of MEI for LLMs (MEI4LLM), outlining its core components and how it supports the deployment of LLMs. Subsequently, we delve into various aspects of MEI4LLM, extensively covering edge LLM caching and delivery, edge LLM training, and edge LLM inference. Finally, we identify future research opportunities. We hope this article inspires researchers in the field to leverage mobile edge computing to facilitate LLM deployment, thereby unleashing the potential of LLMs across various privacy-and delay-sensitive applications.</description><subject>6G mobile communication</subject><subject>Artificial intelligence</subject><subject>Bandwidth</subject><subject>edge intelligence</subject><subject>foundation models</subject><subject>Image edge detection</subject><subject>Internet</subject><subject>Large language models</subject><subject>mobile edge computing</subject><subject>Reviews</subject><subject>Servers</subject><subject>split learning</subject><subject>Surveys</subject><subject>Training</subject><subject>Tutorials</subject><issn>1553-877X</issn><issn>2373-745X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkMFKw0AQhhdRsFZfQDzsC6TO7uxudr2VULWQ0kMr9BY2m0mJpE3ZWKFvb7Q9eJphmO_n52PsUcBECHDP2XKxWk8kSD1BLVOjxBUbSUwxSZXeXLOR0BoTm6abW3bX958ASioHIzZfdGXTEp9VW-Lz_Re1bbOlfSBed5HnPg7n3O-3Rz8si66itn_hU551w-vu0EUfT3x1jN90umc3tW97erjMMft4na2z9yRfvs2zaZ4EAVYk1lvlKYAkMpW0DkOp0BsJBmSthbCk0QRZWwyovdOqqkoC6x2Ss86UOGbynBti1_eR6uIQm93QoxBQ_Moo_mQUvzKKi4wBejpDDRH9AyxqMA5_AKy1Wx4</recordid><startdate>20250108</startdate><enddate>20250108</enddate><creator>Qu, Guanqiao</creator><creator>Chen, Qiyuan</creator><creator>Wei, Wei</creator><creator>Lin, Zheng</creator><creator>Chen, Xianhao</creator><creator>Huang, Kaibin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4463-5652</orcidid><orcidid>https://orcid.org/0000-0002-4295-940X</orcidid><orcidid>https://orcid.org/0000-0001-8773-4629</orcidid></search><sort><creationdate>20250108</creationdate><title>Mobile Edge Intelligence for Large Language Models: A Contemporary Survey</title><author>Qu, Guanqiao ; Chen, Qiyuan ; Wei, Wei ; Lin, Zheng ; Chen, Xianhao ; Huang, Kaibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1081-8a84aec02ee6d2893cb43a620602f5118e536c2f83c35a954ddbe08a93e9896b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>6G mobile communication</topic><topic>Artificial intelligence</topic><topic>Bandwidth</topic><topic>edge intelligence</topic><topic>foundation models</topic><topic>Image edge detection</topic><topic>Internet</topic><topic>Large language models</topic><topic>mobile edge computing</topic><topic>Reviews</topic><topic>Servers</topic><topic>split learning</topic><topic>Surveys</topic><topic>Training</topic><topic>Tutorials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Guanqiao</creatorcontrib><creatorcontrib>Chen, Qiyuan</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Lin, Zheng</creatorcontrib><creatorcontrib>Chen, Xianhao</creatorcontrib><creatorcontrib>Huang, Kaibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE Communications surveys and tutorials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Guanqiao</au><au>Chen, Qiyuan</au><au>Wei, Wei</au><au>Lin, Zheng</au><au>Chen, Xianhao</au><au>Huang, Kaibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobile Edge Intelligence for Large Language Models: A Contemporary Survey</atitle><jtitle>IEEE Communications surveys and tutorials</jtitle><stitle>COMST</stitle><date>2025-01-08</date><risdate>2025</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1553-877X</issn><eissn>2373-745X</eissn><abstract>On-device large language models (LLMs), referring to running LLMs on edge devices, have raised considerable interest since they are more cost-effective, latency-efficient, and privacy-preserving compared with the cloud paradigm. Nonetheless, the performance of on-device LLMs is intrinsically constrained by resource limitations on edge devices. Sitting between cloud and on-device AI, mobile edge intelligence (MEI) presents a viable solution by provisioning AI capabilities at the edge of mobile networks. This article provides a contemporary survey on harnessing MEI for LLMs. We begin by illustrating several killer applications to demonstrate the urgent need for deploying LLMs at the network edge. Next, we present the preliminaries of LLMs and MEI, followed by resource-efficient LLM techniques. We then present an architectural overview of MEI for LLMs (MEI4LLM), outlining its core components and how it supports the deployment of LLMs. Subsequently, we delve into various aspects of MEI4LLM, extensively covering edge LLM caching and delivery, edge LLM training, and edge LLM inference. Finally, we identify future research opportunities. We hope this article inspires researchers in the field to leverage mobile edge computing to facilitate LLM deployment, thereby unleashing the potential of LLMs across various privacy-and delay-sensitive applications.</abstract><pub>IEEE</pub><doi>10.1109/COMST.2025.3527641</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4463-5652</orcidid><orcidid>https://orcid.org/0000-0002-4295-940X</orcidid><orcidid>https://orcid.org/0000-0001-8773-4629</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-877X
ispartof IEEE Communications surveys and tutorials, 2025-01, p.1-1
issn 1553-877X
2373-745X
language eng
recordid cdi_crossref_primary_10_1109_COMST_2025_3527641
source IEEE Electronic Library (IEL) Journals
subjects 6G mobile communication
Artificial intelligence
Bandwidth
edge intelligence
foundation models
Image edge detection
Internet
Large language models
mobile edge computing
Reviews
Servers
split learning
Surveys
Training
Tutorials
title Mobile Edge Intelligence for Large Language Models: A Contemporary Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobile%20Edge%20Intelligence%20for%20Large%20Language%20Models:%20A%20Contemporary%20Survey&rft.jtitle=IEEE%20Communications%20surveys%20and%20tutorials&rft.au=Qu,%20Guanqiao&rft.date=2025-01-08&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1553-877X&rft.eissn=2373-745X&rft_id=info:doi/10.1109/COMST.2025.3527641&rft_dat=%3Ccrossref_ieee_%3E10_1109_COMST_2025_3527641%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1081-8a84aec02ee6d2893cb43a620602f5118e536c2f83c35a954ddbe08a93e9896b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10835069&rfr_iscdi=true